Fluctuation theory and exit systems for positive self-similar Markov processes. (English) Zbl 1241.60019

For a positive self-similar Markov process \(X\), the authors construct a local time for the random set of times for which the process reaches its past supremum. Using this local time the authors describe an exit system for the excursions of \(X\) out of its past supremum. The authors define and study the ladder process \((R,H)\) which is a bivariate Markov process with a scaling property whose coordinates are the right inverse of the local time at the past supremum and the process \(X\) sampled on the local time scale. The process \((R,H)\) is described in terms of a ladder process linked to the Lévy process associated to \(X\) via the Lamperti transformation. In the case where \(X\) never hits \(0\), and the upward ladder height is not arithmetic and has finite mean, the authors prove the finite-dimensional convergence of \((R,H)\) as the starting point of \(X\) tends to \(0\). These results are used to provide an alternative proof of the weak convergence of \(X\) as the starting point tends to \(0\). The approach addresses two issues which remained open in [M. E. Caballero and L. Chaumont, Ann. Probab. 34, No. 3, 1012–1034 (2006; Zbl 1098.60038)], namely, how to remove a redundant hypothesis and how to provide a formula for the entrance law of \(X\) in the case where the underlying Lévy process \(X\) oscillates.


60G18 Self-similar stochastic processes
60G17 Sample path properties
60J55 Local time and additive functionals
60G51 Processes with independent increments; Lévy processes


Zbl 1098.60038
Full Text: DOI arXiv


[1] Bertoin, J. (1991). Sur la décomposition de la trajectoire d’un processus de Lévy spectralement positif en son infimum. Ann. Inst. Henri Poincaré Probab. Stat. 27 537-547. · Zbl 0758.60073
[2] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121 . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003
[3] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102 . Cambridge Univ. Press, Cambridge. · Zbl 1107.60002
[4] Bertoin, J. and Caballero, M.-E. (2002). Entrance from 0+ for increasing semi-stable Markov processes. Bernoulli 8 195-205. · Zbl 1002.60032
[5] Bertoin, J. and Yor, M. (2002). The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17 389-400. · Zbl 1004.60046
[6] Bertoin, J. and Yor, M. (2005). Exponential functionals of Lévy processes. Probab. Surv. 2 191-212 (electronic). · Zbl 1189.60096
[7] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003
[8] Caballero, M. E. and Chaumont, L. (2006). Weak convergence of positive self-similar Markov processes and overshoots of Lévy processes. Ann. Probab. 34 1012-1034. · Zbl 1098.60038
[9] Carmona, P., Petit, F. and Yor, M. (1997). On the distribution and asymptotic results for exponential functionals of Lévy processes. In Exponential Functionals and Principal Values Related to Brownian Motion. Biblioteca de la Revista Matemática Iberoamericana 73-130. Rev. Mat. Iberoam., Madrid. · Zbl 0905.60056
[10] Chaumont, L. (1996). Conditionings and path decompositions for Lévy processes. Stochastic Process. Appl. 64 39-54. · Zbl 0879.60072
[11] Chaumont, L. and Doney, R. A. (2005). On Lévy processes conditioned to stay positive. Electron. J. Probab. 10 948-961 (electronic). · Zbl 1109.60039
[12] Chaumont, L., Kyprianou, A. E. and Pardo, J. C. (2009). Some explicit identities associated with positive self-similar Markov processes. Stochastic Process. Appl. 119 980-1000. · Zbl 1170.60017
[13] Chaumont, L. and Pardo, J. C. (2006). The lower envelope of positive self-similar Markov processes. Electron. J. Probab. 11 1321-1341 (electronic). · Zbl 1127.60034
[14] Chaumont, L. and Rivero, V. (2007). On some transformations between positive self-similar Markov processes. Stochastic Process. Appl. 117 1889-1909. · Zbl 1129.60039
[15] Doney, R. A. (2007). Fluctuation Theory for Lévy Processes. Lecture Notes in Math. 1897 . Springer, Berlin. · Zbl 1128.60036
[16] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 vi+147. · Zbl 1037.60074
[17] Fitzsimmons, P. J. (2006). On the existence of recurrent extensions of self-similar Markov processes. Electron. Commun. Probab. 11 230-241. · Zbl 1110.60036
[18] Getoor, R. K. (1979). Splitting times and shift functionals. Z. Wahrsch. Verw. Gebiete 47 69-81. · Zbl 0394.60073
[19] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications . Springer, Berlin. · Zbl 1104.60001
[20] Kyprianou, A. E. and Pardo, J. C. (2008). Continuous-state branching processes and self-similarity. J. Appl. Probab. 45 1140-1160. · Zbl 1157.60078
[21] Lamperti, J. (1972). Semi-stable Markov processes. I. Z. Wahrsch. Verw. Gebiete 22 205-225. · Zbl 0274.60052
[22] Lindner, A. and Maller, R. (2005). Lévy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes. Stochastic Process. Appl. 115 1701-1722. · Zbl 1080.60056
[23] Maisonneuve, B. (1975). Exit systems. Ann. Probab. 3 399-411. · Zbl 0311.60047
[24] Millar, P. W. (1977). Zero-one laws and the minimum of a Markov process. Trans. Amer. Math. Soc. 226 365-391. · Zbl 0381.60062
[25] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006
[26] Rivero, V. (2003). A law of iterated logarithm for increasing self-similar Markov processes. Stoch. Stoch. Rep. 75 443-472. · Zbl 1053.60027
[27] Rivero, V. (2005). Recurrent extensions of self-similar Markov processes and Cramér’s condition. Bernoulli 11 471-509. · Zbl 1077.60055
[28] Rivero, V. (2007). Recurrent extensions of self-similar Markov processes and Cramér’s condition. II. Bernoulli 13 1053-1070. · Zbl 1132.60056
[29] Rivero, V. (2010). A note on entrance laws for positive self-similar Markov processes. Unpublished manuscript, Centro de Investigación en Matemáticas, Guanajuato, México.
[30] Yor, M. (2001). Exponential Functionals of Brownian Motion and Related Processes . Springer, Berlin. · Zbl 0999.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.