zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparing Markov chains: aggregation and precedence relations applied to sets of states, with applications to assemble-to-order systems. (English) Zbl 1241.60035
Summary: Solving Markov chains is, in general, difficult if the state space of the chain is very large (or infinite) and lacking a simple repeating structure. One alternative to solving such chains is to construct models that are simple to analyze and provide bounds for a reward function of interest. We present a new bounding method for Markov chains inspired by Markov reward theory: Our method constructs bounds by redirecting selected sets of transitions, facilitating an intuitive interpretation of the modifications of the original system. We show that our method is compatible with strong aggregation of Markov chains; thus we can obtain bounds for an initial chain by analyzing a much smaller chain. We illustrate our method by using it to prove monotonicity results and bounds for assemble-to-order systems.
MSC:
60J10Markov chains (discrete-time Markov processes on discrete state spaces)
60E15Inequalities in probability theory; stochastic orderings
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
90B05Inventory, storage, reservoirs
WorldCat.org
Full Text: DOI