×

zbMATH — the first resource for mathematics

Fuzzy density estimation. (English) Zbl 1241.62040
Summary: A new approach to density estimation with fuzzy random variables (FRV) is developed. In this approach, three methods (histogram, empirical c.d.f., and kernel methods) are extended for density estimation based on \(\alpha \)-cuts of FRVs.

MSC:
62G07 Density estimation
62G86 Nonparametric inference and fuzziness
65C60 Computational problems in statistics (MSC2010)
62G30 Order statistics; empirical distribution functions
Software:
KernSmooth; pyuvdata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alberts T, Karunamuni RJ (2003) A semiparametric method of boundary correction for kernel density estimation. Stat Probab Lett 61: 287–298 · Zbl 1048.62040 · doi:10.1016/S0167-7152(02)00391-7
[2] Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York · Zbl 0822.60002
[3] Campos VSM, Dorea CCY (2001) Kernel density estimation: the general case. Stat Probab Lett 55: 173–180 · Zbl 0987.62022 · doi:10.1016/S0167-7152(01)00109-2
[4] Cheng K, Chu C (2004) Semiparametric density estimation under a two-sample density ratio model. Bernoulli 10(4): 583–604 · Zbl 1055.62032 · doi:10.3150/bj/1093265631
[5] Cheng PE (1994) Nonparametric estimation of mean functionals with data missing at random. J Am Stat Assoc 89: 81–87 · Zbl 0800.62213 · doi:10.1080/01621459.1994.10476448
[6] Cheng PE, Chu CK (1996) Kernel estimation of distribution functions and quantiles with missing data. Stat Sinica 6: 63–78 · Zbl 0839.62038
[7] Devroye L, Györfi L (1985) Nonparametric density estimation. Wiley, New York · Zbl 0546.62015
[8] Fokianos K (2004) Merging information for semiparametric density estimation. J R Stat Soc Series B (Stat Methodol) 66(4): 941–958 · Zbl 1059.62028 · doi:10.1111/j.1467-9868.2004.05480.x
[9] Gil MA (2004) Fuzzy random variables: development and state of the art. In: Klement EP, Pap E (eds) Mathematics of fuzzy systems, linz seminar on fuzzy set theory. Linz, Austria, pp 11–15
[10] Hazelton ML (2000) Marginal density estimation from incomplete bivariate data. Stat Probab Lett 47: 75–84 · Zbl 0973.62032 · doi:10.1016/S0167-7152(99)00140-6
[11] Jones MC (1991) Kernel density estimation for length biased data. Biometrika 78: 511–519 · Zbl 1192.62107 · doi:10.1093/biomet/78.3.511
[12] Ker AP, Ergün AT (2005) Empirical Bayes nonparametric kernel density estimation. Stat Probab Lett 75: 315–324 · Zbl 1085.62005 · doi:10.1016/j.spl.2005.06.013
[13] Keziou A, Leoni-Aubin S (2005) Test of homogeneity in semiparametric two-sample density ratio models. C R Acad Sci Paris Ser I Math 340(12): 905–910 · Zbl 1065.62082 · doi:10.1016/j.crma.2005.04.034
[14] Keziou A, Leoni-Aubin S (2007) On empirical likelihood for semiparametric two-sample density ratio models. J Stat Plan Inference 138: 915–928 · Zbl 1130.62028 · doi:10.1016/j.jspi.2007.02.009
[15] Klement EP, Puri LM, Ralescu DA (1986) Limit theorems for fuzzy random variables. Proc R Soc Lond 407: 171–182 · Zbl 0605.60038 · doi:10.1098/rspa.1986.0091
[16] Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic, theory and applications. Prentic-Hall, Englewood Cliffs, NJ · Zbl 0915.03001
[17] Kruse R, Meyer KD (1987) Statistics with vague data. Reidel Publishing Company, Dordrecht, Netherlands · Zbl 0663.62010
[18] Lee YK, Choi H, Park BU, Yu KS (2004) Local likelihood density estimation on random fields. Stat Probab Lett 68: 347–357 · Zbl 1086.62110 · doi:10.1016/j.spl.2004.04.004
[19] Li S, Ogura Y (2006) Strong laws of large numbers for independent fuzzy set-valued random variables. Fuzzy Sets Syst 157: 2569–2578 · Zbl 1104.60307 · doi:10.1016/j.fss.2003.06.011
[20] Loquin K, Strauss O (2008) Histogram density estimators based upon a fuzzy partition. Stat Probab Lett 78: 1863–1868 · Zbl 1147.62326 · doi:10.1016/j.spl.2008.01.053
[21] Owen AB (2001) Empirical likelihood. Chapman & Hall/CRC, London
[22] Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33: 1065–1076 · Zbl 0116.11302 · doi:10.1214/aoms/1177704472
[23] Prasaka Rao BLS (1983) Nonparametric functional estimation. Academic Press, New York
[24] Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114: 409–422 · Zbl 0592.60004 · doi:10.1016/0022-247X(86)90093-4
[25] Qin J (1998) Inferences for case-control and semiparametric two-sample density ratio models. Biometrika 85(3): 619–630 · Zbl 0954.62053 · doi:10.1093/biomet/85.3.619
[26] Qin J, Zhang B (2005) Density estimation under a two-sample semiparametric model. Nonparametric Stat 17(6): 665–683 · Zbl 1076.62038 · doi:10.1080/10485250500039346
[27] Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27: 642–669 · Zbl 0073.14603 · doi:10.1214/aoms/1177728174
[28] Rosenblatt M (1971) Curve estimates. Ann Math Stat 42: 1815–1842 · Zbl 0231.62100 · doi:10.1214/aoms/1177693050
[29] Shao J (2003) Mathematical statistics, 2nd edn. Springer-Verlag, New York · Zbl 1018.62001
[30] Sheather SJ (2004) Density estimation. Stat Sci 19: 588–597 · Zbl 1100.62558 · doi:10.1214/088342304000000297
[31] Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, New York
[32] Simonoff J (1996) Smoothing methods in statistics. Springer, New York · Zbl 0859.62035
[33] Taheri SM (2003) Trends in fuzzy statistics. Austrian J Stat 32: 239–257
[34] Trutschnig W (2008) A strong consistency result for fuzzy relative frequencies interpreted as estimator for the fuzzy-valued probability. Fuzzy Sets Syst 159: 259–269 · Zbl 1274.62260 · doi:10.1016/j.fss.2007.05.017
[35] Viertl R (1996) Statistical methods for non-precise data. CRC Press, Boca Raton · Zbl 1047.93534
[36] Viertl R (2006) Univariate statistical analysis with fuzzy data. Comput Stat Data Anal 51: 133–147 · Zbl 1157.62368 · doi:10.1016/j.csda.2006.04.002
[37] Viertl R, Hareter D (2006) Beschreibung und Analyse unscharfer Information: Statistische Methoden für unscharfe Daten. Springer, Wien · Zbl 1101.62003
[38] Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall, London
[39] Wu TJ, Chen ChF, Chen HY (2007) A variable bandwidth selector in multivariate kernel density estimation. Stat Probab Lett 77: 462–467 · Zbl 1108.62037 · doi:10.1016/j.spl.2006.08.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.