×

Geometries, non-geometries, and fluxes. (English) Zbl 1241.81134

Summary: Using F-theory/heterotic duality, we describe a framework for analyzing non-geometric \(T_2\)-fibered heterotic compactifications to six- and four dimensions. Our results suggest that among \(T_2\)-fibered heterotic string vacua, the non-geometric compactifications are just as typical as the geometric ones. We also construct four-dimensional solutions that have novel type-IIB and \(M\)-theory dual descriptions. These duals are non-geometric with three- and four-form fluxes not of \((2, 1)\) or \((2, 2)\) Hodge type, respectively, and yet preserve at least \(N = 1\) supersymmetry.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] C. Vafa, Evidence for F-theory, Nucl. Phys. B469 (1996), 403-418, · Zbl 1003.81531
[2] A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D55 (1997), 7345-7349.
[3] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, J. High Energy Phys. 08 (1999), 023.
[4] N. Berkovits, ICTP lectures on covariant quantization of the superstring, 2002 Spring School on Superstrings and Related Matters, ICTP Lect. Notes, vol. XIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2003, pp. 57-107, · Zbl 1069.81570
[5] W. D. Linch, III, J. McOrist and B. C. Vallilo, Type IIB flux vacua from the string worldsheet, J. High Energy Phys. 09 (2008), 042. [hep-th]. · Zbl 1245.81198
[6] A. Clingher and C. F. Doran, Modular invariants for lattice polarized K3 surfaces, Michigan Math. J. 55 (2007), 355-393. · Zbl 1132.14035
[7] L. Carlevaro, D. Israel and P. Marios Petropoulos, Double-Scaling limit of heterotic bundles and dynamical deformation in CFT, Nucl. Phys. B827 (2010), 503-544. [hep-th]. · Zbl 1203.81146
[8] L. Carlevaro and D. Israel, Heterotic resolved conifolds with torsion, from supergravity to CFT, J. High Energy Phys. 01 (2010), 083. [hep-th]. · Zbl 1269.81112
[9] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality, Nucl. Phys. B479 (1996), 243-259. · Zbl 0896.14024
[10] J. de Boer, R. Dijkgraaf, K. Hori, A. Keurentjes, J. Morgan, D. R. Morrison and S. Sethi, Triples, fluxes, and strings, Adv. Theor. Math. Phys. 4 (2001), 995-1186. · Zbl 1011.81065
[11] A. Kumar and C. Vafa, U-manifolds, Phys. Lett. B396 (1997), 85-90,
[12] S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, J. High Energy Phys. 01 (2004), 024, · Zbl 1243.81156
[13] C. M. Hull, A geometry for non-geometric string backgrounds, J. High Energy Phys. 10 (2005), 065.
[14] R. A. Reid-Edwards and B. Spanjaard, N = 4 gauged supergravity from duality-twist compactifications of string theory, J. High Energy Phys. 12 (2008), 052. [hep-th]. · Zbl 1329.83197
[15] S. D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B827 (2010), 281-310. [hep-th]. · Zbl 1203.81131
[16] D. S. Berman, N. B. Copland and D. C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B791 (2008), 175-191. [hep-th]. · Zbl 1225.81111
[17] S. Sethi, A note on heterotic dualities via M-theory, Phys. Lett. B659 (2008), 385-387. [hep-th]. · Zbl 1246.81305
[18] J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, J. High Energy Phys. 02 (2007), 095.
[19] B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007), S773-S794. [hep-th]. · Zbl 1128.81024
[20] M. Ihl, D. Robbins and T. Wrase, Toroidal orientifolds in IIA with general NS-NS fluxes, J. High Energy Phys. 08 (2007), 043. [hep-th]. · Zbl 1246.81296
[21] K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B820 (2009), 1-31. [hep-th]. · Zbl 1194.81185
[22] M. Cvetic, T. Liu and M. B. Schulz, Twisting K3 \times T2 orbifolds, J. High Energy Phys. 09 (2007), 092.
[23] P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized- structure compactifications, J. High Energy Phys. 08 (2007), 082, · Zbl 1326.81207
[24] F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D76 (2007), 041901. [hep-th].
[25] D. Andriot, New supersymmetric flux vacua with intermediate SU(2) structure, J. High Energy Phys. 08 (2008), 096. [hep-th].
[26] W. Schulgin and J. Troost, Backreacted T-folds and non-geometric regions in configuration space, J. High Energy Phys. 12 (2008), 098. [hep-th]. · Zbl 1329.81325
[27] D. Vegh and J. McGreevy, Semi-flatland, J. High Energy Phys. 10 (2008), 068. [hep-th].
[28] J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, · Zbl 1356.81193
[29] B. R. Greene, A. Shapere, C. Vafa and S.-T. Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B337 (1990), 1-36. · Zbl 0744.53045
[30] K. Kodaira, On compact analytic surfaces. II, III, Ann. Math. (2) 77 (1963), 563-626, 78 (1963) 1-40. · Zbl 0118.15802
[31] S. Kawai, Elliptic fibre spaces over compact surfaces, Comment. Math. Univ. St. Paul. 15 (1966/1967), 119-138. · Zbl 0174.24401
[32] K. Ueno, Classification of algebraic varieties. I, Composit. Math. 27 (1973), 277-342. · Zbl 0284.14015
[33] P. Deligne, Courbes elliptiques: formulaire (d’après J. Tate), Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 476, Springer, Berlin, 1975, pp. 53-73. · Zbl 1214.11075
[34] N. Nakayama, On Weierstrass models, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, 1988, pp. 405-431. · Zbl 0699.14049
[35] N. Nakayama, Local structure of an elliptic fibration, Higher dimensional birational geometry (Kyoto, 1997), Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, 2002, pp. 185-295. · Zbl 1059.14015
[36] N. Nakayama, Global structure of an elliptic fibration, Publ. Res. Inst. Math. Sci. 38 (2002), 451-649. · Zbl 1039.14004
[37] D. R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds, I, Nucl. Phys. B473 (1996), 74-92. · Zbl 0925.14005
[38] D. R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds, II, Nucl. Phys. B476 (1996), 437-469. · Zbl 0925.14007
[39] A. Sen, F-theory and orientifolds, Nucl. Phys. B475 (1996), 562-578, · Zbl 0925.81181
[40] K. Dasgupta and S. Mukhi, F-theory at constant coupling, Phys. Lett. B385 (1996), 125-131. · Zbl 1002.81523
[41] P. S. Aspinwall, Enhanced gauge symmetries and Calabi-Yau threefolds, Phys. Lett. B371 (1996), 231-237.
[42] S. Katz, D. R. Morrison and M. R. Plesser, Enhanced gauge symmetry in type II string theory, Nucl. Phys. B477 (1996), 105-140. · Zbl 0925.81188
[43] A. Klemm and P. Mayr, Strong coupling singularities and non-abelian gauge symmetries in N = 2 string theory, Nucl. Phys. B469 (1996), 37-50, · Zbl 1002.81536
[44] E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B471 (1996), 195-216. · Zbl 1003.81537
[45] D. R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105-121. · Zbl 0509.14034
[46] P. S. Aspinwall and D. R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B503 (1997), 533-564. · Zbl 0934.81048
[47] P. S. Aspinwall and M. Gross, The SO(32) heterotic string on a K3 surface, Phys. Lett. B387 (1996), 735-742.
[48] P. S. Aspinwall, Point-like instantons and the Spin(32)/Z2 heterotic string, Nucl. Phys. B496 (1997), 149-176. · Zbl 0935.81054
[49] M. J. Duff, R. Minasian and E.Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B465 (1996), 413-438. · Zbl 1002.81524
[50] G. Lopes Cardoso, G. Curio, D. Lust and T. Mohaupt, On the duality between the heterotic string and F-theory in 8 dimensions, Phys. Lett. B389 (1996), 479-484,
[51] W. Lerche and S. Stieberger, Prepotential, mirror map and Ftheory on K3, Adv. Theor. Math. Phys. 2 (1998), 1105-1140. · Zbl 0970.81056
[52] T. Shioda, Kummer sandwich theorem of certain elliptic K3 surfaces, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 137-140. · Zbl 1112.14044
[53] T. Shioda and H. Inose, On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 119-136. · Zbl 0374.14006
[54] H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 495-502. · Zbl 0411.14009
[55] D. Mumford, Abelian varieties, Oxford University Press, Oxford, 1970. · Zbl 0223.14022
[56] D. R. Morrison, The Kuga-Satake variety of an abelian surface, J.Algebra 92 (1985), 454-476. · Zbl 0559.14031
[57] E. Witten, Small instantons in string theory, Nucl. Phys. B460 (1996), 541-559. · Zbl 0935.81052
[58] M. Berkooz, R. G. Leigh, J. Polchinski, J. H. Schwarz, N. Seiberg and E. Witten, Anomalies, dualities, and topology of D = 6 N = 1 superstring vacua, Nucl. Phys. B475 (1996), 115-148. · Zbl 0925.81335
[59] O. J. Ganor and A. Hanany, Small E8 instantons and tensionless non critical strings, Nucl. Phys. B474 (1996), 122-140. · Zbl 0925.81170
[60] N. Seiberg and E. Witten, Comments on string dynamics in six dimensions, Nucl. Phys. B471 (1996), 121-134. · Zbl 1003.81535
[61] E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B403 (1993), 159-222. · Zbl 0910.14020
[62] P. Candelas, D.-E. Diaconescu, B. Florea, D. R. Morrison and G. Rajesh, Codimension-three bundle singularities in F-theory, J. High Energy Phys. 06 (2002), 014.
[63] S. Sethi, C. Vafa and E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. B480 (1996), 213-224. · Zbl 0925.81209
[64] R. Friedman, J. Morgan and E. Witten, Vector bundles and F theory, Commun. Math. Phys. 187 (1997), 679-743. · Zbl 0919.14010
[65] D. Robbins and S. Sethi, A barren landscape, Phys. Rev. D71 (2005), 046008,
[66] K. Becker, C. Bertinato, Y.-C. Chung and G. Guo, Supersymmetry breaking, heterotic strings and fluxes, Nucl. Phys. B823 (2009), 428-447. [hep-th]. · Zbl 1196.81189
[67] A. Strominger, Superstrings with torsion, Nucl. Phys. B274 (1986), 253.
[68] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, J. High Energy Phys. 10 (2005), 085.
[69] K. Becker and M. Becker, M-theory on eight-manifolds, Nucl. Phys. B477 (1996), 155-167. · Zbl 0925.81190
[70] J. P. Gauntlett, D. Martelli, S. Pakis, and D. Waldram, G-structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004), 421-445, · Zbl 1061.81058
[71] J. P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, J. High Energy Phys. 04 (2003), 039.
[72] J. P. Gauntlett, D. Martelli and D.Waldram, Superstrings with intrinsic torsion, Phys. Rev. D69 (2004), 086002.
[73] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rep. 423 (2006), 91-158.
[74] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds, Nucl. Phys. B584 (2000), 69-108. · Zbl 0984.81143
[75] G. Dall’Agata, On supersymmetric solutions of type-IIB supergravity with general fluxes, Nucl. Phys. B695 (2004), 243-266. · Zbl 1213.83131
[76] D. Tsimpis, M-theory on eight-manifolds revisited: N = 1 supersymmetry and generalized Spin(7) structures, J. High Energy Phys. 04 (2006), 027,
[77] P. S. Aspinwall and D. R. Morrison, Non-simply-connected gauge groups and rational points on elliptic curves, J. High Energy Phys. 07 (1998), 012,
[78] K. Oguiso, On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves, J. Math. Soc. Japan 41 (1989), 651-680. · Zbl 0703.14024
[79] C. V. Johnson, D-brane primer, Strings, branes and gravity, TASI 99 (Boulder, CO), World Sci. Publ., River Edge, NJ, 2001, pp. 129-350, · Zbl 1131.81312
[80] E. Bergshoeff, C. M. Hull and T. Ortin, Duality in the type-II superstring effective action, Nucl. Phys. B451 (1995), 547-578. · Zbl 0925.81147
[81] S. F. Hassan, T-duality, space-time spinors and R-R fields in curved backgrounds, Nucl. Phys. B568 (2000), 145-161. · Zbl 0951.81045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.