×

Total current fluctuations in the asymmetric simple exclusion process. (English) Zbl 1241.82051

Summary: A limit theorem for the total current in the asymmetric simple exclusion process (ASEP) with step initial condition is proven. This extends the result of K. Johansson [Commun. Math. Phys. 209, No. 2, 437–476 (2000; Zbl 0969.15008)] on TASEP to ASEP.
See the authors, Commun. Math. Phys. 290, No. 1, 129–154 (2009; Zbl 1184.60036). {
©2009 American Institute of Physics}

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60F05 Central limit and other weak theorems
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Balázs M., ALEA Lat. Am. J. Probab. Math. Stat. 6 pp 1– (2009)
[2] DOI: 10.1088/0305-4470/39/41/S03 · Zbl 1129.82028
[3] DOI: 10.1007/s002200050027 · Zbl 0969.15008
[4] DOI: 10.1103/PhysRevLett.56.889 · Zbl 1101.82329
[5] Liggett T. M., Interacting Particle Systems (2005)
[6] DOI: 10.1007/978-3-662-03990-8
[7] DOI: 10.1007/s00220-007-0242-2 · Zbl 1127.60091
[8] DOI: 10.1070/RM2000v055n05ABEH000321 · Zbl 0991.60038
[9] DOI: 10.1016/0001-8708(70)90034-4 · Zbl 0312.60060
[10] DOI: 10.1016/j.physa.2006.04.006
[11] DOI: 10.1007/BF02100489 · Zbl 0789.35152
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.