×

A multiscale approach to cell migration in tissue networks. (English) Zbl 1241.92041

Summary: We derive a multiscale model for tumor cell migration allowing to account for the receptor-mediated movement of the cells, the degradation of tissue fibers and the subsequent production of a soluble ligand whose concentration gradient then acts together with the distribution of tissue fibers as a directional cue for the cells. For this model we present a result on the local existence and uniqueness of a solution in all biologically relevant space dimensions.

MSC:

92C50 Medical applications (general)
92C37 Cell biology
92C17 Cell movement (chemotaxis, etc.)
74A25 Molecular, statistical, and kinetic theories in solid mechanics
45K05 Integro-partial differential equations
74S99 Numerical and other methods in solid mechanics
65R99 Numerical methods for integral equations, integral transforms

Software:

Chemotaxis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aliprantis C. D., Infinite Dimensional Analysis (2006) · Zbl 1156.46001
[2] DOI: 10.1080/10273660008833042 · Zbl 0947.92012
[3] DOI: 10.1115/1.2796072
[4] DOI: 10.1016/j.camwa.2006.02.028 · Zbl 1121.92025
[5] DOI: 10.1142/S0218202510004568 · Zbl 1402.92065
[6] DOI: 10.1016/j.mcm.2009.12.002 · Zbl 1190.92001
[7] DOI: 10.1016/S0006-3495(99)76921-3
[8] DOI: 10.1007/s00605-004-0234-7 · Zbl 1052.92005
[9] Chaplain M. A. J., Networks Heterogeneous Media 1 pp 399–
[10] DOI: 10.3934/nhm.2007.2.333 · Zbl 1115.92009
[11] Chicone C., Ordinary Differential Equations with Applications (2006) · Zbl 1120.34001
[12] DOI: 10.1007/s002850050006 · Zbl 0998.92005
[13] DOI: 10.1007/BF01393835 · Zbl 0696.34049
[14] DOI: 10.1137/040603565 · Zbl 1073.35205
[15] DOI: 10.1007/s00285-004-0286-2 · Zbl 1080.92014
[16] DOI: 10.1142/S0218202599000269
[17] DOI: 10.1038/nrc1075
[18] DOI: 10.1152/physiol.00009.2005
[19] DOI: 10.1007/978-3-0348-5478-8
[20] Hillen T., SIAM J. Appl. Math. 61 pp 751–
[21] DOI: 10.1007/s00285-006-0017-y · Zbl 1112.92003
[22] Kelkel J., J. Math. Biosci. Engrg. 8 pp 575–
[23] DOI: 10.1007/s00285-009-0284-5 · Zbl 1198.92004
[24] DOI: 10.1002/mma.1133 · Zbl 1180.35279
[25] DOI: 10.1016/j.jmaa.2004.06.025 · Zbl 1080.34018
[26] Lachowicz M., Comp. Rend. Mec. 331 pp 733–
[27] DOI: 10.1139/o95-078
[28] DOI: 10.1016/0009-2509(89)85131-0
[29] DOI: 10.1007/s10231-003-0082-4 · Zbl 1170.35364
[30] DOI: 10.1007/BF00288431 · Zbl 0716.92004
[31] DOI: 10.1007/s11538-005-9032-1 · Zbl 1334.92061
[32] DOI: 10.1007/BF00277392 · Zbl 0713.92018
[33] DOI: 10.1137/S0036139900382772 · Zbl 1103.35098
[34] Surulescu C., Int. J. Biomath. Biostat. 1 pp 109–
[35] DOI: 10.3934/mbe.2011.8.263 · Zbl 1259.62103
[36] DOI: 10.1137/S0036141003431888 · Zbl 1099.82018
[37] DOI: 10.1007/BF00713564
[38] DOI: 10.2217/fon.09.30
[39] DOI: 10.1038/nrc2148
[40] Yamaguchi H., J. Cell Biol. 31 pp 441–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.