×

Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. (English) Zbl 1241.93025

Summary: This Letter investigates synchronization of two nonidentical Lur’e systems with time-varying delay and parameter mismatches via impulsive control. Based on the theory of impulsive functional differential equations, sufficient conditions for impulsive synchronization with a bound on the synchronization error are derived. An illustrative example is provided to validate the proposed method.

MSC:

93C10 Nonlinear systems in control theory
49N25 Impulsive optimal control problems
34D06 Synchronization of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34K20 Stability theory of functional-differential equations
34K23 Complex (chaotic) behavior of solutions to functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chen, G.; Dong, X., From Chaos to Order: Methodologies, Perspectives and Applications (1998), World Scientific: World Scientific Singapore
[2] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Phys. Rep., 469, 93 (2008)
[3] Pecora, L. M.; Carrol, T. L., Phys. Rev. Lett., 64, 821 (1999)
[4] He, W.; Cao, J., IEEE Trans. Neural Networks, 21, 571 (2010)
[5] Liao, X.; Chen, G., Int. J. Bifur. Chaos, 13, 207 (2003)
[6] He, W.; Cao, J., Phys. Lett. A, 373, 2682 (2009)
[7] Lu, J.; Cao, J.; Ho, D., IEEE Trans. Circuits Syst. I, 55, 1347 (2008)
[8] He, W.; Cao, J., Phys. Lett. A, 372, 408 (2008)
[9] Huang, T.; Li, C.; Yu, W.; Chen, G., Nonlinearity, 22, 569 (2009)
[10] Xia, W.; Cao, J., Chaos, 19, 013120 (2009)
[11] Tavazoei, M. S.; Haeri, M., Physica A, 387, 57 (2008)
[12] Liang, J.; Wang, Z.; Liu, Y.; Liu, X., IEEE Trans. Syst. Man Cybernet. Part B, 38, 1073 (2008)
[13] Wang, Z.; Wang, Y.; Liu, Y., IEEE Trans. Neural Networks, 21, 11 (2010)
[14] Song, Q.; Wang, Z., Physica A, 387, 3314 (2008)
[15] Zhao, Y.; Yang, Y., Phys. Lett. A, 372, 7165 (2008)
[16] Jiang, H.; Bi, Q., Phys. Lett. A, 374, 2723 (2010)
[17] Huijberts, H.; Nijmeijer, H.; Oguchi, T., Chaos, 17, 013117 (2007)
[18] Han, Q.-L., IEEE Trans. Circuits Syst. I, 54, 1573 (2007)
[19] Han, Q.-L., Int. J. Bifur. Chaos, 19, 517 (2009)
[20] Rulkov, N.; Sushchik, M.; Tsimring, L.; Abarband, H., Phys. Rev. E, 51, 980 (1995)
[21] Astakhov, V.; Hasler, M.; Kapitaniak, T.; Shabunin, A.; Anishchenko, V., Phys. Rev. E, 58, 5620 (1998)
[22] Johnson, G.; Mar, D.; Carroll, T.; Pecora, L., Phys. Rev. Lett., 80, 3956 (1998)
[23] Suykens, J. A.; Curran, P. F.; Chua, L. O., IEEE Trans. Circuits Syst. I, 44, 891 (1997)
[24] Suykens, J. A.; Curran, P. F.; Chua, L. O., IEEE Trans. Circuits Syst. I, 46, 841 (1999)
[25] Huang, H.; Feng, G.; Sun, Y., Chaos, 19, 033128 (2009)
[26] Li, C.; Chen, G.; Liao, X.; Fan, Z., Chaos, 16, 023102 (2006) · Zbl 1146.37326
[27] Huang, T.; Li, C.; Liao, X., Chaos, 17, 033121 (2007)
[28] Zhang, H.; Ma, T.; Huang, G.; Wang, Z., IEEE Trans. Syst. Man Cybernet. Part B, 40, 831 (2010)
[29] Guan, Z.; Liu, Z.; Feng, G.; Wang, Y., IEEE Trans. Circuits Syst. I, 57, 2182 (2010)
[30] Song, Q.; Cao, J.; Liu, F., Phys. Lett. A, 374, 544 (2010)
[31] Duan, Z.; Chen, G., IEEE Trans. Circuits Syst. II, 56, 678 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.