×

Integral and computational representations of the extended Hurwitz-Lerch zeta function. (English) Zbl 1242.11065

The family of generalized Hurwitz-Lerch zeta functions is defined in the following form \[ \Phi_{\lambda,\mu;\nu}^{(\rho,\sigma,\kappa)}(z,s,a):=\sum_{n=0}^{\infty}\frac{(\lambda)_{{\rho n}}(\mu)_{\sigma n}}{(\nu_{\kappa n}\cdot n!)}\frac{z^n}{(n+a)^s}, \] where \(\lambda,\mu \in \mathbb C\); \(a,\nu \in \mathbb C \setminus (\mathbb Z^- \cup\{0\})\); \(\rho, \sigma, \kappa \in \mathbb R^+\); \(\kappa-\rho-\sigma>-1\) when \(s,z \in \mathbb C\); \(\kappa-\rho-\sigma=-1\) and \(s\in \mathbb C\) when \(|z|<\rho^{-\rho}\sigma^{-\sigma}\kappa^{\kappa}\); \(\kappa-\rho-\sigma=-1\) and \(\text{Re}(s+\nu-\lambda-\mu)>1\) when \(|z|=\rho^{-\rho}\sigma^{-\sigma}\kappa^{\kappa}\).
The authors establish the Mellin-Barnes type integral representations, relations with \(\overline H\)-function, fractional derivatives and analytic continuation formulas which provides an extension of the analytic continuation formula for the Gauss hypergeometric function. Also, they present an extension of the generalized Hurwitz-Lerch zeta function, i.e, the special cases associated with the Mittag-Leffler type functions and the generalized \(M\)-series are obtained.

MSC:

11M35 Hurwitz and Lerch zeta functions
33C60 Hypergeometric integrals and functions defined by them (\(E\), \(G\), \(H\) and \(I\) functions)
33C05 Classical hypergeometric functions, \({}_2F_1\)

Citations:

JFM 37.0427.01
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1098/rsta.1906.0019 · JFM 37.0427.01
[2] DOI: 10.1088/0305-4470/23/20/030 · Zbl 0695.33002
[3] DOI: 10.1080/10652460701528909 · Zbl 1145.11068
[4] Erdélyi A., Higher Transcendental Functions (1953) · Zbl 0051.30303
[5] Erdélyi A., Tables of Integral Transforms (1954) · Zbl 0055.36401
[6] Erdélyi A., Higher Transcendental Functions (1955) · Zbl 0064.06302
[7] Garg M., Algebras Groups Geom 25 pp 311– (2008)
[8] DOI: 10.1080/10652460600926907 · Zbl 1184.11005
[9] Goyal S. P., Ga ita Sandesh 11 pp 99– (1997)
[10] Gupta K. C., Kyungpook Math. J. 41 pp 97– (2001)
[11] DOI: 10.1016/j.amc.2007.06.012 · Zbl 1131.62093
[12] DOI: 10.1088/0305-4470/20/13/019 · Zbl 0634.33005
[13] DOI: 10.1088/0305-4470/20/13/020 · Zbl 0634.33006
[14] Jankov D., Appl. Math. Lett
[15] Kilbas A. A., Theory and Applications of Fractional Differential Equations (2006) · Zbl 1138.26300
[16] DOI: 10.1016/S0096-3003(03)00746-X · Zbl 1078.11054
[17] DOI: 10.1080/10652460600926923 · Zbl 1172.11026
[18] Mathai A. M., The H-Function: Theory and Applications (2010)
[19] Nishimoto K., J. Fract. Calc. 22 pp 91– (2002)
[20] DOI: 10.1080/10652460701542074 · Zbl 1130.30003
[21] S.G. Samko, A.A. Kilbas, and O.I. Marichev,Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian:Integrals and Derivatives of Fractional Order and Some of their Applications(’Nauka i Tekhnika’, Minsk, 1987), Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania), 1993 · Zbl 0617.26004
[22] Saxena R. K., Matematiche (Catania) 53 pp 123– (1998)
[23] Saxena R. K., Indian J. Pure Appl. Math. 26 pp 1111– (1995)
[24] Saxena R. K., Math. Balkanica 11 pp 69– (1997)
[25] Saxena R. K., Rev. Acad. Canaria Cienc. 14 pp 97– (2002)
[26] Saxena R. K., Rev. Acad. Canaria Cienc. 14 pp 111– (2002)
[27] Sharma M., Fract. Calc. Appl. Anal. 12 pp 449– (2009)
[28] DOI: 10.1017/S0305004100004412 · Zbl 0978.11004
[29] Srivastava H. M., Series Associated with the Zeta and Related Functions (2001) · Zbl 1014.33001
[30] Srivastava H. M., Multiple Gaussian Hypergeometric Series (1985) · Zbl 0552.33001
[31] DOI: 10.1016/j.amc.2009.01.055 · Zbl 1432.30022
[32] DOI: 10.1134/S1061920810020093 · Zbl 1259.11032
[33] Srivastava H. M., The H-Functions of One and Two Variables with Applications (1982) · Zbl 0506.33007
[34] DOI: 10.1134/S1061920806010092 · Zbl 1223.33027
[35] Whittaker E. T., A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4. ed. (1927) · JFM 53.0180.04
[36] Yen C-E, J. Fract. Calc. 22 pp 99– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.