×

zbMATH — the first resource for mathematics

Equivariant geometric K-homology for compact Lie group actions. (English) Zbl 1242.19006
This article generalises the geometric K-homology of Baum and Douglas to the equivariant setting, for compact Lie groups. They prove that this theory is canonically isomorphic to analytic equivariant K-homology.

MSC:
19K33 Ext and \(K\)-homology
19K35 Kasparov theory (\(KK\)-theory)
19K56 Index theory
19L47 Equivariant \(K\)-theory
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Antonyan, S.A., Elfving, E.: The equivariant homotopy type of G-ANR’s for compact group actions. Manuscr. Math. 124(3), 275–297 (2007) · Zbl 1134.55008
[2] Atiyah, M.F.: Bott periodicity and the index of elliptic operators. Q. J. Math. Oxford Ser. (2) 19, 113–140 (1968) · Zbl 0159.53501
[3] Atiyah, M.F.: Global theory of elliptic operators. In: Proc. Internat. Conf. on Functional Analysis and Related Topics, Tokyo, 1969, pp. 21–30. Univ. of Tokyo Press, Tokyo (1970)
[4] Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(suppl. 1), 3–38 (1964) · Zbl 0146.19001
[5] Baum, P., Douglas, R.G.: K homology and index theory. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, pp. 117–173. Am. Math. Soc., Providence (1982)
[6] Baum, P., Higson, N., Schick, T.: A geometric description of equivariant K-homology for proper actions. arXiv:0907.2066 , to appear in Proceedings of the Conference on Non-commutative Geometry (Connes 60) · Zbl 1216.19006
[7] Baum, P., Higson, N., Schick, T.: On the equivalence of geometric and analytic K-homology. Pure Appl. Math. Q. 3(1), 1–24 (2007) · Zbl 1146.19004
[8] Blackadar, B.: In: K-theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998) · Zbl 0913.46054
[9] Blaine Lawson, H. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[10] Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20(6), 1139–1183 (1984) · Zbl 0575.58030
[11] Emerson, H., Meyer, R.: Bivariant K-theory via correspondences. arXiv:0812.4949 · Zbl 1207.19003
[12] Gleason, A.M.: Spaces with a compact Lie group of transformations. Proc. Am. Math. Soc. 1, 35–43 (1950) · Zbl 0041.36207
[13] Higson, N., Roe, J.: Analytic K-homology. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000) · Zbl 0968.46058
[14] Jakob, M.: A bordism-type description of homology. Manuscr. Math. 96(1), 67–80 (1998) · Zbl 0897.55004
[15] Jaworowski, J.W.: Extensions of G-maps and Euclidean G-retracts. Math. Z. 146(2), 143–148 (1976) · Zbl 0309.57020
[16] Kasparov, G.G.: Topological invariants of elliptic operators I: K-homology. Math. USSR Izv. 9, 751–792 (1975) · Zbl 0337.58006
[17] Kasparov, G.G.: The operator K-functor and extensions of C *-algebras. Math. USSR Izv. 16(3), 513–572 (1981) · Zbl 0464.46054
[18] Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91, 147–201 (1988) · Zbl 0647.46053
[19] Kasparov, G.G., Skandalis, G.: Groups acting on buildings, operator K-theory, and Novikov’s conjecture. K-Theory 4(4), 303–337 (1991) · Zbl 0738.46035
[20] Mostow, G.D.: Equivariant embeddings in Euclidean space. Ann. Math. (2) 65, 432–446 (1957) · Zbl 0080.16701
[21] Segal, G.: Equivariant K-theory. Inst. Hautes Étud. Sci. Publ. Math. 34, 129–151 (1968) · Zbl 0199.26202
[22] Tu, J.L.: La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory 16(2), 129–184 (1999) · Zbl 0932.19005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.