Stehlíková, Beáta; Markechová, Dagmar; Tirpáková, Anna On the existence of a Haar measure in topological IP-loops. (English) Zbl 1242.28022 Kybernetika 47, No. 5, 740-754 (2011). Let \(G\times G\rightarrow G\) be a binary (not necessarily associative) operation on a set G such that \((G,\cdot)\) has a a neutral element and for every \(x\in G\) there is an element \(x^{-1}\) with \((yx)x^{-1}=y=x^{-1}(xy)\) for any \(y\in G\). Then \((G,\cdot)\) is called an IP-loop. A topological IP-loop is an IP-loop endowed with a topology such that \((x,y)\mapsto x^{-1}y\) is continuous. The authors prove that in every locally compact topological IP-loop whose topology is induced by a left-invariant uniformity there exists at least one left Haar measure, i.e., a left-invariant non-zero \([0,\infty]\)-valued \(\sigma\)-additive measure defined on the \(\sigma\)-algebra generated by the compact subsets of \(G\) such that any compact subset of \(G\) has finite measure. As mentioned by the authors, they proved in another paper that a Haar measure on a locally compact topological IP-loop unique up to a factor. Reviewer: Hans Weber (Udine) Cited in 1 ReviewCited in 2 Documents MSC: 28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures 20N05 Loops, quasigroups Keywords:quasigroup; topological IP-loop; Haar measure; left-invariant uniformity PDF BibTeX XML Cite \textit{B. Stehlíková} et al., Kybernetika 47, No. 5, 740--754 (2011; Zbl 1242.28022) Full Text: Link References: [1] Baez, J.: The Octonions. Bull. Amer. Math. Soc. 39 (2002), 145-205. · Zbl 1026.17001 [2] Belousov, V. D.: Foundations of the Theory of Quasigroups and Loops (in Russian). Nauka, Moscow, 1967. [3] Bruck, R. H.: Some results in the theory of quasigroups. Trans. Amer. Math. Soc. 55 (1944), 19-52. · Zbl 0063.00635 [4] Bruck, R. H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354. · Zbl 0061.02201 [5] Haar, A.: Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. 34 (1933), 147-169. · Zbl 0006.10103 [6] Halmos, P.: Measure Theory. Springer-Verlag New York Inc. 1974. · Zbl 0283.28001 [7] Hudson, S. N.: Transformation groups in the theory of topological loops. Proc. Amer. Math. Soc. 15 (1964), 872-877. · Zbl 0133.16203 [8] Hudson, S. N.: Topological loops with invariant uniformities. Trans. Amer. Math. Soc. 109 (1963), 1, 181-190. · Zbl 0115.02501 [9] Chein, O., Pflugfelder, H. O., Smith, J. D. H.: Quasigroups and Loops. Theory and Application. Heldermann Verlag, 1990. · Zbl 0719.20036 [10] Kinyon, M. K., Kunen, K., Phillips, J. D.: Every diassociative A-loop is Moufang. Proc. Amer. Math. Soc. 130 (2002), 619-624. · Zbl 0990.20044 [11] Markechová, D., Stehlíková, B., Tirpáková, A.: The uniqueness of a left Haar measure in topological IP-loops. · Zbl 1413.28022 [12] Moufang, R.: Zur Struktur von alternativ Korpern. Math. Ann. 110 (1935), 416-430. · Zbl 0010.00403 [13] Nagy, P. T., Strambach, K.: Coverings of topological loops. J. Math. Sci. 137 (2006), 5, 5098-5116. · Zbl 1181.22009 [14] Nagy, P. T., Strambach, K.: Loops in Group Theory and Lie Theory. De Gruyter Expositions in Mathematics, Berlin - New York 2002. · Zbl 1050.22001 [15] Pflugfelder, H. O.: Quasigroups and Loops. Introduction. Heldermann Verlag, 1990. · Zbl 0719.20036 [16] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Academic Publishers 1997. · Zbl 0916.28001 [17] Schwarz, Š.: On the existence of invariant measures on certain types of bicompact semigroups (in Russian). Czechoslovak Math. J. 7 (1957), 82, 165-182. · Zbl 0089.01203 [18] Smith, J. D. H.: Quasigroup Representation Theory. Taylor & Francis, 2006. · Zbl 0772.20023 [19] Weil, A.: Basic Number Theory. Academic Press, 1971. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.