×

\(n\)-Bazilevic functions. (English) Zbl 1242.30008

Summary: The aim of this paper is to define and study a class of Bazilevic functions using the generalized Sălăgean operator. Some properties of this class are investigated: inclusion relation, some convolution properties, coefficient bounds, and other interesting results.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Sheil-Small, “The Hadamard product and linear transformations of classes of analytic functions,” Journal d’Analyse Mathematique, vol. 34, pp. 204-239, 1978. · Zbl 0405.30005 · doi:10.1007/BF02790013
[2] I. E. Bazilevic, “On a case of integrability in quadratures of the Loewner-Kufarev equation,” Matematicheskii Sbornik, vol. 37, pp. 471-476, 1955.
[3] M. Arif, K. I. Noor, and M. Raza, “On a class of analytic functions related with generalized Bazilevic type functions,” Computers and Mathematics with Applications, vol. 61, no. 9, pp. 2456-2462, 2011. · Zbl 1221.30021 · doi:10.1016/j.camwa.2011.02.026
[4] Y. C. Kim, “A note on growth theorem of Bazilevic functions,” Applied Mathematics and Computation, vol. 208, no. 2, pp. 542-546, 2009. · Zbl 1159.30314 · doi:10.1016/j.amc.2008.12.027
[5] A. T. Oladipo, “On a new subfamilies of Bazilevic functions,” Acta Universitatis Apulensis, no. 29, pp. 165-185, 2012. · Zbl 1289.30099
[6] Q. Deng, “On the coefficients of Bazilevic functions and circularly symmetric functions,” Applied Mathematics Letters, vol. 24, no. 6, pp. 991-995, 2011. · Zbl 1211.30012 · doi:10.1016/j.aml.2011.01.012
[7] T. Sheil-Small, “Some remarks on Bazilevic functions,” Journal d’Analyse Mathematique, vol. 43, pp. 1-11, 1983. · Zbl 0566.30009 · doi:10.1007/BF02790175
[8] F. M. Al-Oboudi, “On univalent functions defined by a generalized Salagean operator,” International Journal of Mathematics and Mathematical Sciences, no. 25-28, pp. 1429-1436, 2004. · Zbl 1072.30009 · doi:10.1155/S0161171204108090
[9] G. S. Salagean, “Subclasses of univalent functions,” in Complex Analysis, Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), vol. 1013 of Lecture Notes in Mathematics, pp. 362-372, Springer, Berlin, Germany, 1983. · Zbl 0531.30009 · doi:10.1007/BFb0066543
[10] St. Ruscheweyh, Convolutions in Geometric Function Theory, vol. 83 of Seminaire de Mathematiques Superieures, Presses de l’Universite de Montreal, Montreal, Canada, 1982. · Zbl 0499.30001
[11] A. C\uata\cs, G. I. Oros, and G. Oros, “Differential subordinations associated with multiplier transformations,” Abstract and Applied Analysis, vol. 2008, Article ID 845724, 11 pages, 2008. · Zbl 1153.30021 · doi:10.1155/2008/845724
[12] M. Darus and I. Faisal, “A study on Becker’s univalence criteria,” Abstract and Applied Analysis, vol. 2011, Article ID 759175, 13 pages, 2011. · Zbl 1220.30015 · doi:10.1155/2011/759175
[13] D. Blezu, “On the n-close-to-convex functions with respect to a convex set. I,” Mathematica Revue d’Analyse Numérique et de Théorie de l’Approximation, vol. 28(51), no. 1, pp. 9-19, 1986. · Zbl 0613.30010
[14] W. Kaplan, “Close-to-convex schlicht functions,” The Michigan Mathematical Journal, vol. 1, pp. 169-185, 1952. · Zbl 0048.31101 · doi:10.1307/mmj/1028988895
[15] S. Abdul Halim, “On a class of analytic functions involving the Salagean differential operator,” Tamkang Journal of Mathematics, vol. 23, no. 1, pp. 51-58, 1992. · Zbl 0752.30003
[16] T. O. Opoola, “On a new subclass of univalent functions,” Mathematica, vol. 36, no. 2, pp. 195-200, 1994. · Zbl 0867.30011
[17] H. S. Al-Amiri, “On the Hadamard products of schlicht functions and applications,” International Journal of Mathematics and Mathematical Sciences, vol. 8, no. 1, pp. 173-177, 1985. · Zbl 0581.30008 · doi:10.1155/S0161171285000163
[18] R. W. Barnard and C. Kellogg, “Applications of convolution operators to problems in univalent function theory,” The Michigan Mathematical Journal, vol. 27, no. 1, pp. 81-94, 1980. · Zbl 0413.30013 · doi:10.1307/mmj/1029002312
[19] J. Zamorski, “On Bazilevic schlicht functions,” Annales Polonici Mathematici, vol. 12, pp. 83-90, 1962. · Zbl 0106.04804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.