The Shi arrangement of the type \(D_{\ell}\). (English) Zbl 1242.32015

Summary: We give a basis for the derivation module of the cone over the Shi arrangement of the type \(D_{\ell}\) explicitly.


32S22 Relations with arrangements of hyperplanes
05E15 Combinatorial aspects of groups and algebras (MSC2010)
Full Text: DOI arXiv Euclid


[1] P. H. Edelman and V. Reiner, Free arrangements and rhombic tilings, Discrete Comput. Geom. 15 (1996), no. 3, 307-340. · Zbl 0853.52013 · doi:10.1007/BF02711498
[2] J. Herzog and T. Hibi, Monomial ideals , Grad. Texts in Math., 260, Springer, London, 2011. · Zbl 1206.13001
[3] P. Orlik and H. Terao, Arrangements of hyperplanes , Grundlehren der Mathematischen Wissenschaften, 300, Springer, Berlin, 1992. · Zbl 0757.55001
[4] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265-291. · Zbl 0496.32007
[5] J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups , Lecture Notes in Math., 1179, Springer, Berlin, 1986. · Zbl 0582.20030 · doi:10.1007/BFb0074968
[6] D. Suyama and H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. London Math. Soc. (to appear). arXiv: · Zbl 1251.32022 · doi:10.1112/blms/bdr118
[7] D. Suyama, On the Shi arrangements of types \(B_{\ell}\), \(C_{\ell}\), \(F_{4}\) and \(G_{2}\). (in preparation).
[8] H. Terao, Arrangements of hyperplanes and their freeness. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 293-320. · Zbl 0509.14007
[9] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), no. 1, 159-179. · Zbl 0437.51002 · doi:10.1007/BF01389197
[10] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), no. 2, 449-454. · Zbl 1113.52039 · doi:10.1007/s00222-004-0359-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.