## Necessary and sufficient condition for the existence of solutions to a discrete second-order boundary value problem.(English)Zbl 1242.34035

Summary: This paper is concerned with the existence of solutions for the discrete second-order boundary value problem $$\Delta^2 u(t - 1) + \lambda_1 u(t) + g(\Delta u(t)) = f(t), t \in \{1, 2, \dots, T\}, u(0) = u(T + 1) = 0$$, where $$T > 1$$ is an integer, $$f : \{1, \dots, T\} \rightarrow \mathbb R, g : \mathbb R \rightarrow \mathbb R$$ is bounded and continuous, and $$\lambda_1$$ is the first eigenvalue of the eigenvalue problem $$\Delta^2 u(t - 1) + \lambda u(t) = 0, t \in \mathbb T, u(0) = u(T + 1) = 0$$.

### MSC:

 34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text:

### References:

 [1] D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, Oxford Applied Mathematics and Computing Science Series, Clarendon Press, Oxford, UK, 1977. · Zbl 0417.34002 [2] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA, 1979. · Zbl 0574.73075 [3] B. J. Lazan, Damping of Meterials in Structural Mechanics, Pergamon Press, Elmsford, NY, USA, 1968. [4] N. Minorsky, Nonlinear Oscillations, Van Nostrand, Princeton, NJ, USA, 1962. · Zbl 0123.06101 [5] E. M. Landesman and A. C. Lazer, “Nonlinear perturbations of linear elliptic boundary value problems at resonance,” Journal of Mathematics and Mechanics, vol. 19, pp. 609-623, 1969/1970. · Zbl 0193.39203 [6] R. Iannacci and M. N. Nkashama, “Unbounded perturbations of forced second order ordinary differential equations at resonance,” Journal of Differential Equations, vol. 69, no. 3, pp. 289-309, 1987. · Zbl 0627.34008 · doi:10.1016/0022-0396(87)90121-5 [7] R. Kannan, R. K. Nagle, and K. L. Pothoven, “Remarks on the existence of solutions of x$$^{\prime\prime}$$+x+arctan(x$$^{\prime}$$)=p(t); x(0)=x(\pi )=0,” Nonlinear Analysis: Theory, Methods & Applications, vol. 22, no. 6, pp. 793-796, 1994. · Zbl 0802.34021 · doi:10.1016/0362-546X(94)90227-5 [8] A. Cañada and P. Drábek, “On semilinear problems with nonlinearities depending only on derivatives,” SIAM Journal on Mathematical Analysis, vol. 27, no. 2, pp. 543-557, 1996. · Zbl 0852.34018 · doi:10.1137/S0036141094261082 [9] P. Habets and L. Sanchez, “A two-point problem with nonlinearity depending only on the derivative,” SIAM Journal on Mathematical Analysis, vol. 28, no. 5, pp. 1205-1211, 1997. · Zbl 0886.34015 · doi:10.1137/S003614109529570X [10] P. Drábek, P. Girg, and F. Roca, “Remarks on the range properties of certain semilinear problems of Landesman-Lazer type,” Journal of Mathematical Analysis and Applications, vol. 257, no. 1, pp. 131-140, 2001. · Zbl 0993.34012 · doi:10.1006/jmaa.2000.7328 [11] N. Del Toro and F. Roca, “Existence and multiplicity of solutions for certain Dirichlet problems with nonlinearity depending on the derivative,” Nonlinear Analysis: Theory, Methods & Applications, vol. 55, no. 7-8, pp. 827-843, 2003. · Zbl 1048.34034 · doi:10.1016/j.na.2003.07.007 [12] J. Rodriguez, “Nonlinear discrete Sturm-Liouville problems,” Journal of Mathematical Analysis and Applications, vol. 308, no. 1, pp. 380-391, 2005. · Zbl 1076.39016 · doi:10.1016/j.jmaa.2005.01.032 [13] R. Ma, “Nonlinear discrete Sturm-Liouville problems at resonance,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 11, pp. 3050-3057, 2007. · Zbl 1129.39006 · doi:10.1016/j.na.2006.09.058 [14] R. Ma and H. Ma, “Unbounded perturbations of nonlinear discrete periodic problem at resonance,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 7, pp. 2602-2613, 2009. · Zbl 1166.39008 · doi:10.1016/j.na.2008.03.047 [15] R. Ma and H. Ma, “Existence of sign-changing periodic solutions of second order difference equations,” Applied Mathematics and Computation, vol. 203, no. 2, pp. 463-470, 2008. · Zbl 1186.39018 · doi:10.1016/j.amc.2008.05.125 [16] P. J. Y. Wong and R. P. Agarwal, “Fixed-sign solutions of a system of higher order difference equations,” Journal of Computational and Applied Mathematics, vol. 113, no. 1-2, pp. 167-181, 2000. · Zbl 0940.39003 · doi:10.1016/S0377-0427(99)00251-4 [17] R. P. Agarwal and D. O’Regan, “Nonpositone discrete boundary value problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 39, no. 2, pp. 207-215, 2000. · Zbl 0937.39001 · doi:10.1016/S0362-546X(98)00183-7 [18] D. Bai and Y. Xu, “Nontrivial solutions of boundary value problems of second-order difference equations,” Journal of Mathematical Analysis and Applications, vol. 326, no. 1, pp. 297-302, 2007. · Zbl 1113.39018 · doi:10.1016/j.jmaa.2006.02.091 [19] J. Henderson, “Positive solutions for nonlinear difference equations,” Nonlinear Studies, vol. 4, no. 1, pp. 29-36, 1997. · Zbl 0883.39002 [20] J. Henderson and H. B. Thompson, “Existence of multiple solutions for second-order discrete boundary value problems,” Computers & Mathematics with Applications, vol. 43, no. 10-11, pp. 1239-1248, 2002. · Zbl 1005.39014 · doi:10.1016/S0898-1221(02)00095-0 [21] R. Ma and Y. N. Raffoul, “Positive solutions of three-point nonlinear discrete second order boundary value problem,” Journal of Difference Equations and Applications, vol. 10, no. 2, pp. 129-138, 2004. · Zbl 1056.39024 · doi:10.1080/1023619031000114323 [22] J. Mawhin, “Topological degree and boundary value problems for nonlinear differential equations,” in Topological Methods for Ordinary Differential Equations, P. M. Fitzpatric, M. Matelli, J. Mawhin, and R. Nussbaum, Eds., vol. 1537 of Lecture Notes in Math., pp. 74-142, Springer, Berlin, Germany, 1993. · Zbl 0798.34025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.