zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Composite tracking control for generalized practical synchronization of Duffing-Holmes systems with parameter mismatching, unknown external excitation, plant uncertainties, and uncertain deadzone nonlinearities. (English) Zbl 1242.34099
Summary: The generalized practical synchronization (GPS) of uncertain Duffing-Holmes chaotic systems with parameter mismatching, unknown external excitation, plant uncertainties, and uncertain deadzone nonlinearities is investigated. Based on the composite control approach, a tracking control is derived to realize the GPS for the uncertain Duffing-Holmes chaotic systems with parameter mismatching, unknown external excitation, plant uncertainties, and uncertain deadzone nonlinearities. Besides, the guaranteed exponential decay rate, convergence radius, and desired scaling factor can be prespecified. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of the proposed GPS scheme.

MSC:
34D06Synchronization
34H05ODE in connection with control problems
93C15Control systems governed by ODE
WorldCat.org
Full Text: DOI
References:
[1] X.-L. An, J.-N. Yu, Y.-Z. Li, Y.-D. Chu, J.-G. Zhang, and X.-F. Li, “Design of a new multistage chaos synchronized system for secure communications and study on noise perturbation,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 7-18, 2011. · Zbl 1225.94019 · doi:10.1016/j.mcm.2011.01.020
[2] J. Banasiak, “Chaos in Kolmogorov systems with proliferation-general criteria and applications,” Journal of Mathematical Analysis and Applications, vol. 378, no. 1, pp. 89-97, 2011. · Zbl 1281.47027 · doi:10.1016/j.jmaa.2010.12.054
[3] Y.-Q. Che, J. Wang, S.-G. Cui et al., “Chaos synchronization of coupled neurons via adaptive sliding mode control,” Nonlinear Analysis, vol. 12, no. 6, pp. 3199-3206, 2011. · Zbl 1231.37050 · doi:10.1016/j.nonrwa.2011.05.020
[4] S. Gakkhar and A. Singh, “Control of chaos due to additional predator in the Hastings-Powell food chain model,” Journal of Mathematical Analysis and Applications, vol. 385, no. 1, pp. 423-438, 2012. · Zbl 1225.37105 · doi:10.1016/j.jmaa.2011.06.047
[5] N. Jia and T. Wang, “Chaos control and hybrid projective synchronization for a class of new chaotic systems,” Computers & Mathematics with Applications, vol. 62, no. 12, pp. 4783-4795, 2011. · Zbl 1213.34077 · doi:10.1155/2011/452671 · eudml:228196
[6] Y. Yang, Y. Wang, X. Yuan, and F. Yin, “Hybrid chaos optimization algorithm with artificial emotion,” Applied Mathematics and Computation, vol. 218, no. 11, pp. 6585-6611, 2012. · Zbl 1242.65120
[7] D. H. Ji, J. H. Park, and S. C. Won, “Master-slave synchronization of Lur’e systems with sector and slope restricted nonlinearities,” Physics Letters A, vol. 373, no. 11, pp. 1044-1050, 2009. · Zbl 1228.34076 · doi:10.1016/j.physleta.2009.01.038
[8] H. Kebriaei and M. Javad Yazdanpanah, “Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 430-441, 2010. · Zbl 1221.34139 · doi:10.1016/j.cnsns.2009.04.005
[9] J. Li, W. Li, and Q. Li, “Sliding mode control for uncertain chaotic systems with input nonlinearity,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 341-348, 2012. · Zbl 1250.34052 · doi:10.1016/j.cnsns.2011.04.018
[10] X. Wu, X. Wu, X. Luo, Q. Zhu, and X. Guan, “Neural network-based adaptive tracking control for nonlinearly parameterized systems with unknown input nonlinearities,” Neurocomputing, vol. 82, no. 1, pp. 127-142, 2012.
[11] Y. J. Sun, “Robust tracking control of uncertain Duffing-Holmes control systems,” Chaos, Solitons & Fractals, vol. 40, no. 3, pp. 1282-1287, 2009. · Zbl 1197.37141 · doi:10.1016/j.chaos.2007.09.007
[12] Y. Z. Chen and X. Y. Lin, “A successive integration technique for the solution of the Duffing oscillator equation with damping and excitation,” Nonlinear Analysis A, vol. 70, no. 10, pp. 3603-3608, 2009. · Zbl 1162.65365 · doi:10.1016/j.na.2008.07.017
[13] S. Bowong, F. M. Moukam Kakmeni, and J. L. Dimi, “Chaos control in the uncertain Duffing oscillator,” Journal of Sound and Vibration, vol. 292, no. 3-5, pp. 869-880, 2006. · Zbl 1243.93086 · doi:10.1016/j.jsv.2005.09.009