Semilinear parabolic equations on the Heisenberg group with a singular potential. (English) Zbl 1242.35149

Summary: We discuss the asymptotic behavior of solutions for semilinear parabolic equations on the Heisenberg group with a singular potential. The singularity is controlled by Hardy’s inequality, and the nonlinearity is controlled by Sobolev’s inequality. We also establish the existence of a global branch of the corresponding steady states via the classical Rabinowitz theorem.


35K58 Semilinear parabolic equations
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
35B40 Asymptotic behavior of solutions to PDEs
35K67 Singular parabolic equations
35B32 Bifurcations in context of PDEs
Full Text: DOI


[1] G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Arkiv för Matematik, vol. 13, no. 2, pp. 161-207, 1975. · Zbl 0312.35026 · doi:10.1007/BF02386204
[2] D. Jerison and J. M. Lee, “Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem,” Journal of the American Mathematical Society, vol. 1, no. 1, pp. 1-13, 1988. · Zbl 0634.32016 · doi:10.2307/1990964
[3] L. D’Ambrosio, “Some Hardy inequalities on the Heisenberg group,” Differential Equations, vol. 40, no. 4, pp. 552-564, 2004. · Zbl 1073.22003 · doi:10.1023/B:DIEQ.0000035792.47401.2a
[4] J. Dou, P. Niu, and Z. Yuan, “A Hardy inequality with remainder terms in the Heisenberg group and the weighted eigenvalue problem,” Journal of Inequalities and Applications, vol. 2007, Article ID 32585, 24 pages, 2007. · Zbl 1133.26019 · doi:10.1155/2007/32585
[5] N. I. Karachalios and N. B. Zographopoulos, “The semiflow of a reaction diffusion equation with a singular potential,” Manuscripta Mathematica, vol. 130, no. 1, pp. 63-91, 2009. · Zbl 1178.35221 · doi:10.1007/s00229-009-0284-1
[6] J. M. Ball, “On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations,” Journal of Differential Equations, vol. 27, no. 2, pp. 224-265, 1978. · Zbl 0376.35002 · doi:10.1016/0022-0396(78)90032-3
[7] J. M. Ball, “Global attractors for damped semilinear wave equations,” Discrete and Continuous Dynamical Systems. Series A, vol. 10, no. 1-2, pp. 31-52, 2004. · Zbl 1056.37084 · doi:10.3934/dcds.2004.10.31
[8] J. López-Gómez and M. Molina-Meyer, “Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas,” Journal of Differential Equations, vol. 209, no. 2, pp. 416-441, 2005. · Zbl 1066.47063 · doi:10.1016/j.jde.2004.07.018
[9] H. Mokrani, “Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential,” Communications on Pure and Applied Analysis, vol. 8, no. 5, pp. 1619-1636, 2009. · Zbl 1179.35334 · doi:10.3934/cpaa.2009.8.1619
[10] L. Capogna, D. Danielli, and N. Garofalo, “An embedding theorem and the Harnack inequality for nonlinear subelliptic equations,” Communications in Partial Differential Equations, vol. 18, no. 9-10, pp. 1765-1794, 1993. · Zbl 0802.35024 · doi:10.1080/03605309308820992
[11] J.-M. Bony, “Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,” Annales de l’Institut Fourier, vol. 19, pp. 277-304, 1969. · Zbl 0176.09703 · doi:10.5802/aif.319
[12] I. Birindelli and A. Cutrì, “A semi-linear problem for the Heisenberg Laplacian,” Rendiconti del Seminario Matematico della Università di Padova, vol. 94, pp. 137-153, 1995. · Zbl 0858.35040
[13] P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems,” vol. 7, pp. 487-513, 1971. · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[14] E. N. Dancer, “Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one,” The Bulletin of the London Mathematical Society, vol. 34, no. 5, pp. 533-538, 2002. · Zbl 1027.58009 · doi:10.1112/S002460930200108X
[15] J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, vol. 426 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2001. · Zbl 0978.47048 · doi:10.1201/9781420035506
[16] R. Ikehata and T. Suzuki, “Stable and unstable sets for evolution equations of parabolic and hyperbolic type,” Hiroshima Mathematical Journal, vol. 26, no. 3, pp. 475-491, 1996. · Zbl 0873.35010
[17] L. E. Payne and D. H. Sattinger, “Saddle points and instability of nonlinrar parabolic equations,” Hiroshima Mathematical Journal, vol. 30, pp. 117-127, 2000.
[18] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983. · Zbl 0516.47023
[19] T. Cazenave and A. Haraux, Introduction aux Problèmes D’évolution Semi-Linéaires, vol. 1 of Mathématiques & Applications, Ellipses, Paris, France, 1990. · Zbl 0786.35070
[20] J. K. Hale, Asymptotic behavior of dissipative systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 1988. · Zbl 0642.58013
[21] M. Willem, Minimax Theorems, vol. 24 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1996. · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.