zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Potential symmetries and conservation laws for generalized quasilinear hyperbolic equations. (English) Zbl 1242.35177
Summary: Based on the Lie group method, the potential symmetries and invariant solutions for generalized quasilinear hyperbolic equations are studied. To obtain the invariant solutions in an explicit form, the physically interesting situations with potential symmetries are focused on, and the conservation laws for these equations in three physically interesting cases are found by using the partial Lagrangian approach.

35L72Quasilinear second-order hyperbolic equations
35B06Symmetries, invariants, etc. (PDE)
Full Text: DOI arXiv
[1] Olver, P. J. Applications of Lie Groups to Differential Equations, Springer, New York (1986) · Zbl 0588.22001
[2] Ovsiannikov, L. V. Group Analysis of Differential Equations, Academic Press, New York (1982) · Zbl 0485.58002
[3] Liu, N., Liu, X. Q., and Lü, H. L. New exact solutions and conservation laws of the (2+1)-dimensional dispersive long wave equations. Physics Letters A, 373(2), 214--220 (2009) · Zbl 1227.35124 · doi:10.1016/j.physleta.2008.11.007
[4] Ibragimov, N. H., Kara, A. H., and Mahomed, F. M. Lie-Bäcklund and Noether symmetries with applications. Nonlinear Dynamics, 15, 115--136 (1998) · Zbl 0912.35011 · doi:10.1023/A:1008240112483
[5] Yasar, E. and Özer, T. Conservation laws for one-layer shallow water waves systems. Nonlinear Analysis: Real World Applications, 11(2), 838--848 (2010) · Zbl 1184.35266 · doi:10.1016/j.nonrwa.2009.01.028
[6] Mei, F. X. Applications of Lie Groups and Lie Algebraic to Constraint Mechanical Systems (in Chinese), Science Press, Beijing (1999)
[7] Bluman, G. W., Reid, G. J., and Kumei, S. New classes of symmetries for partial differential equations. Journal of Mathematical Physics, 29, 806--811 (1988) · Zbl 0669.58037 · doi:10.1063/1.527974
[8] Khater, A. H., Callebaut, D. K., Abdul-Aziza, S. F., and Abdelhameeda, T. N. Potential symmetry and invariant solutions of Fokker-Planck equation modelling magnetic field diffusion in magnetohydrodynamics including the Hall current. Physica A: Statistical Mechanics and Its Applications, 341, 107--122 (2004) · doi:10.1016/j.physa.2004.04.118
[9] Bluman, G. W. Applications of Symmetry Methods to Partial Differential Equations, Springer, Berlin (2010) · Zbl 1223.35001
[10] Noether, E. Invariante variations probleme. Nachrichten von der Könglichen Gesellschaft der Wissenschaften zu Göttingen, 1(3), 235--257 (1918)
[11] Bessel-Hagen, E. Über die erhaltungssätzeder elektrodynamik. Mathematische Annalen, 84, 258--276 (1921) · Zbl 48.0877.02 · doi:10.1007/BF01459410
[12] Fu, J. L., Chen, L. Q., and Chen, B. Y. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices. Science China: Physics, Mechanics and Astronomy, 53(3), 545--554 (2010) · doi:10.1007/s11433-009-0258-z
[13] Fu, J. L., Fu, H., and Liu, R. W. Hojman conserved quantities of discrete mechanico-electrical systems constructed by continuous symmetries. Physics Letters A, 374(17--18), 1812--1818 (2010) · Zbl 1236.78010 · doi:10.1016/j.physleta.2010.02.046
[14] Fu, J. L., Chen, L. Q., Jiménez, S., and Tang, Y. F. Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems. Physics Letters A, 358(1), 5--10 (2006) · Zbl 1142.70318 · doi:10.1016/j.physleta.2006.04.097
[15] Ibragimov, N. H. CRC Handbook of Lie Group Analysis of Differential Equations: Volume 1, CRC-Press, Boca Raton, Florida (1994) · Zbl 0864.35001
[16] Khalique, C. M. and Mahomed, F. M. Conservation laws for equations related to soil water equations. Mathematical Problems in Engineering, 2005(1), 141--150 (2005) · Zbl 1079.35004 · doi:10.1155/MPE.2005.141
[17] Kara, A. H. and Mahomed, F. M. Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dynamics, 45(3), 367--383 (2006) · Zbl 1121.70014 · doi:10.1007/s11071-005-9013-9
[18] Johnpillai, A. G., Kara, A. H., and Mahomed, F. M. Conservation laws of a nonlinear (1 + 1) wave equation. Nonlinear Analysis: Real World Applications, 11(4), 2237--2242 (2010) · Zbl 1194.35272 · doi:10.1016/j.nonrwa.2009.06.013
[19] Bokharia, A. H., Al-Dweika, A. Y., Mahomed, F. M., and Zaman, F. D. Conservation laws of a nonlinear (n+1) wave equation. Nonlinear Analysis: Real World Applications, 11(4), 2862--2870 (2010) · Zbl 1197.35174 · doi:10.1016/j.nonrwa.2009.10.009
[20] Qin, M. C., Mei, F. X., and Xu, X. J. Nonclassical potential symmetries and invariant solutions of the heat equation. Applied Mathematics and Mechanics (English Edition), 27(2), 247--253 (2006) DOI 10.1007/s10483-006-0213-y · Zbl 1167.35306 · doi:10.1007/s10483-006-0213-y
[21] Bluman, G. W., Temuerchaolu, and Sahadevan, R. Local and nonlocal symmetries for nonlinear telegraph equations. Journal of Mathematical Physics, 46(2), 023505 (2005) · Zbl 1076.35077 · doi:10.1063/1.1841481