Stević, Stevo On a system of difference equations. (English) Zbl 1242.39017 Appl. Math. Comput. 218, No. 7, 3372-3378 (2011). Summary: We show that the system of difference equations \[ x_{n+1}=\frac{ax_{n-1}}{by_nx_{n-1}+c},\quad y_{n+1}=\frac{\alpha y_{n-1}}{\beta x_ny_{n-1}+\gamma},\quad n\in\mathbb{N}_0, \] where the parameters \(a,b,c,\alpha,\beta,\gamma\) and initial values \(x_{-1},x_0,y_{-1},y_0\) are real numbers, can be solved, considerably improving the results in the literature. Cited in 72 Documents MSC: 39A20 Multiplicative and other generalized difference equations Keywords:system of rational difference equations; stability PDF BibTeX XML Cite \textit{S. Stević}, Appl. Math. Comput. 218, No. 7, 3372--3378 (2011; Zbl 1242.39017) Full Text: DOI References: [1] Aloqeili, M., Global stability of a rational symmetric difference equation, Appl. Math. Comput., 215, 3, 950-953 (2009) · Zbl 1177.39019 [2] Berenhaut, K.; Foley, J.; Stević, S., The global attractivity of the rational difference equation \(y_n=1+(y_{n\)−\(k\) · Zbl 1109.39004 [3] Berenhaut, K.; Stević, S., The behaviour of the positive solutions of the difference equation \(x_n=A+(x_{n\)−2 · Zbl 1111.39003 [4] Berenhaut, K.; Stević, S., The global attractivity of a higher order rational difference equation, J. Math. Anal. Appl., 326, 2, 940-944 (2007) · Zbl 1112.39002 [5] Berg, L.; Stević, S., Periodicity of some classes of holomorphic difference equations, J. Differ. Equat. Appl., 12, 8, 827-835 (2006) · Zbl 1103.39004 [6] Berg, L.; Stević, S., Linear difference equations mod 2 with applications to nonlinear difference equations, J. Differ. Equat. Appl., 14, 7, 693-704 (2008) · Zbl 1156.39003 [7] Berg, L.; Stević, S., On the asymptotics of the difference equation \(y_n(1 + y_{n - 1} \cdots y_{n - k + 1}) = y_{n - k}\), J. Differ. Equat. Appl., 17, 4, 577-586 (2011) · Zbl 1220.39011 [8] Diblik, J.; Schmeidel, E.; Ružičková, M., Asymptotically periodic solutions of Volterra system of difference equations, Comput. Math. Appl., 59, 2854-2867 (2010) · Zbl 1202.39013 [9] Iričanin, B.; Stević, S., Some systems of nonlinear difference equations of higher order with periodic solutions, Dynam. Contin. Discrete Impuls. Systems, 13 a, 3-4, 499-508 (2006) · Zbl 1098.39003 [10] Iričanin, B.; Stević, S., Eventually constant solutions of a rational difference equation, Appl. Math. Comput., 215, 854-856 (2009) · Zbl 1178.39012 [11] Iričanin, B. D.; Stević, S., On a class of third-order nonlinear difference equations, Appl. Math. Comput., 213, 479-483 (2009) · Zbl 1178.39011 [15] Kurbanli, A. S.; Cinar, C.; Yalcinkaya, I., On the behavior of positive solutions of the system of rational difference equations \(x_{n+1}=x_{n\)−1 · Zbl 1217.39024 [16] Papaschinopoulos, G.; Schinas, C. J., On the behavior of the solutions of a system of two nonlinear difference equations, Comm. Appl. Nonlinear Anal., 5, 2, 47-59 (1998) · Zbl 1110.39301 [17] Papaschinopoulos, G.; Schinas, C. J., Invariants for systems of two nonlinear difference equations, Diff. Equat. Dynam. Syst., 7, 2, 181-196 (1999) · Zbl 0978.39014 [18] Papaschinopoulos, G.; Schinas, C. J., Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear Anal. TMA, 46, 7, 967-978 (2001) · Zbl 1003.39007 [19] Papaschinopoulos, G.; Schinas, C. J., On the system of two difference equations \(x_{n + 1} = \sum_{i = 0}^k A_i / y_{n - i}^{p_i}, y_{n + 1} = \sum_{i = 0}^k B_i / x_{n - i}^{q_i}\), J. Math. Anal. Appl., 273, 2, 294-309 (2002) · Zbl 1014.39016 [20] Papaschinopoulos, G.; Stefanidou, G., Trichotomy of a system of two difference equations, J. Math. Anal. Appl., 289, 216-230 (2004) · Zbl 1045.39008 [21] Stević, S., On the recursive sequence \(x_{n+1}=x_{n\)−1 · Zbl 1019.39010 [22] Stević, S., More on the difference equation \(x_{n+1}=x_{n\)−1 [23] Stević, S., Global stability and asymptotics of some classes of rational difference equations, J. Math. Anal. Appl., 316, 60-68 (2006) · Zbl 1090.39009 [24] Stević, S., On positive solutions of a \((k+1)\) th order difference equation, Appl. Math. Lett., 19, 5, 427-431 (2006) · Zbl 1095.39010 [26] Stević, S., Existence of nontrivial solutions of a rational difference equation, Appl. Math. Lett., 20, 28-31 (2007) · Zbl 1131.39009 [27] Stević, S., Nontrivial solutions of a higher-order rational difference equation, Math. Notes, 84, 5-6, 718-724 (2008) · Zbl 1219.39007 [28] Stević, S., On the difference equation \(x_{n+1}=α+(x_{n\)−1 · Zbl 1155.39305 [29] Stević, S., On the recursive sequence \(x_{n + 1} = \max \left``\{c, x_n^p / x_{n - 1}^p\right``\}\), Appl. Math. Lett., 21, 8, 791-796 (2008) · Zbl 1152.39012 [30] Stević, S., Boundedness character of a class of difference equations, Nonlinear Anal. TMA, 70, 839-848 (2009) · Zbl 1162.39011 [31] Stević, S., Global stability of a difference equation with maximum, Appl. Math. Comput., 210, 525-529 (2009) · Zbl 1167.39007 [32] Stević, S., Global stability of a max-type equation, Appl. Math. Comput., 216, 354-356 (2010) · Zbl 1193.39009 [33] Stević, S., Global stability of some symmetric difference equations, Appl. Math. Comput., 216, 179-186 (2010) · Zbl 1193.39008 [34] Stević, S., Periodicity of max difference equations, Util. Math., 83, 69-71 (2010) · Zbl 1236.39018 [35] Stević, S., On a generalized max-type difference equation from automatic control theory, Nonlinear Anal. TMA, 72, 1841-1849 (2010) · Zbl 1194.39007 [36] Stević, S., On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl., 376, 317-328 (2011) · Zbl 1208.39014 [37] Stević, S., Periodicity of a class of nonautonomous max-type difference equations, Appl. Math. Comput., 217, 9562-9566 (2011) · Zbl 1225.39018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.