×

When a characteristic function generates a Gabor frame. (English) Zbl 1242.42023

Summary: We investigate the characterization problem which asks for a classification of all the triples \((a,b,c)\) such that the Gabor system \(\{e^{i2m\pi b t} \chi_{[na,c+na)} : m, n \in \mathbb Z \}\) is a frame for \(L^2(\mathbb R)\). We present a new approach to this problem. With the help of a set-valued mapping defined on certain union of intervals, we are able to provide a complete solution for the case of \(ab\) being a rational number. For the irrational case, we prove that the classification problem can also be completely settled if the union of some intervals obtained from the set-valued mapping becomes stabilized after finitely many times of iterations, which we conjecture is always true.

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
Full Text: DOI

References:

[1] Casazza, P., Modern tools for Weyl-Heisenberg frame theory, Adv. Imag. Electron Phys., 115, 1-127 (2000)
[2] Casazza, P.; Christensen, O., Weyl-Heisenberg frames for subspaces of \(L^2(R)\), Proc. Amer. Math. Soc., 129, 145-154 (2001) · Zbl 0987.42023
[3] Casazza, P.; Kalton, N., Roots of complex polynomials and Weyl-Heisenberg frames, Proc. Amer. Math. Soc., 130, 2313-2318 (2002) · Zbl 0991.42023
[4] P. Casazza, M. Lammers, Classifying characteristic functions giving Weyl-Heisenberg frames, preprint; P. Casazza, M. Lammers, Classifying characteristic functions giving Weyl-Heisenberg frames, preprint
[5] Christensen, O., Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. (N.S.), 38, 273-291 (2001) · Zbl 0982.42018
[6] Daubechies, I., The wavelet transforms, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 39, 961-1005 (1990) · Zbl 0738.94004
[7] Daubechies, I., Ten Lectures on Wavelets, CBS-NSF Regional Conferences in Applied Mathematics, vol. 61 (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018
[8] Daubechies, I.; Grossmann, A., Frames in the Bargmann spaces of entire expansions, Comm. Pure Appl. Math., 41, 151-164 (1988) · Zbl 0632.30049
[9] Daubechies, I.; Grossmann, A.; Meyer, Y., Painless nonorthogonal expansions, J. Math. Phys., 27, 1271-1283 (1986) · Zbl 0608.46014
[10] Duffin, R.; Schaeffer, A., A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72, 341-366 (1952) · Zbl 0049.32401
[11] Feichtinger, H. G.; Strohmer, T., Gabor Analysis and Algorithms. Theory and Applications, Appl. Numer. Harmon. Anal. (1998), Birkhäuser: Birkhäuser Boston, MA · Zbl 0890.42004
[12] Gröchenig, K., Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal. (2001), Birkhäuser: Birkhäuser Boston, MA · Zbl 0966.42020
[13] Gröchenig, K.; Janssen, A.; Kaiblinger, N.; Pfander, G., Note on B-splines, wavelet scaling functions and Gabor frames, IEEE Trans. Inform. Theory, 49, 3318-3320 (2003) · Zbl 1286.94033
[14] Han, D.; Larson, D., Frames, bases and group representations, Mem. Amer. Math. Soc., 697 (2000) · Zbl 0971.42023
[15] Heil, C., History and evolution of the Density Theorem for Gabor frames, J. Fourier Anal. Appl., 13, 113-166 (2007) · Zbl 1133.42043
[16] Heil, C.; Walnut, D., Continuous and discrete wavelet transforms, SIAM Rev., 31, 628-666 (1989) · Zbl 0683.42031
[17] Janssen, A. J.E. M., Representations of Gabor frame operators, in: Twentieth Century Harmonic Analysis—A Celebration, (NATO Sci. Ser. II, Math. Phys. Chem., vol. 33 (2001), Kluwer Academic: Kluwer Academic Dordrecht), 73-101 · Zbl 1003.42017
[18] Janssen, A. J.E. M., Zak transforms with few zeros and the tie, (Feichtinger, H. G.; Strohmer, T., Advances in Gabor Analysis (2003), Birkhäuser: Birkhäuser Boston), 31-70 · Zbl 1027.42025
[19] Lyubarskii, Yu. I., Frames in the Bargmann space of entire functions, (Entire and Subharmonic Functions (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 167-180 · Zbl 0770.30025
[20] Rieffel, M., Von Neumann algebra associated with pairs of lattices in Lie groups, Math. Ann., 257, 403-418 (1981) · Zbl 0486.22004
[21] Seip, K., Density theorems for sampling and interpolation in the Bargmann-Fock space I, J. Reine Angew. Math., 429, 91-106 (1992) · Zbl 0745.46034
[22] Seip, K.; Wallstén, R., Sampling and interpolation in the Bargmann-Fock space II, J. Reine Angew. Math., 429, 107-113 (1992) · Zbl 0745.46033
[23] Walnut, D., Continuity properties of the Gabor frame operator, J. Math. Anal. Appl., 165, 479-504 (1992) · Zbl 0763.47014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.