×

An implicit algorithm for maximal monotone operators and pseudocontractive mappings. (English) Zbl 1242.47049

Summary: The purpose of this paper is to construct an implicit algorithm for finding the common solution of maximal monotone operators and strictly pseudocontractive mappings in Hilbert spaces. Some applications are also included.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations

References:

[1] M. A. Noor and K. I. Noor, “Sensitivity analysis for quasi-variational inclusions,” Journal of Mathematical Analysis and Applications, vol. 236, no. 2, pp. 290-299, 1999. · Zbl 0949.49007 · doi:10.1006/jmaa.1999.6424
[2] M. A. Noor, “Generalized set-valued variational inclusions and resolvent equations,” Journal of Mathematical Analysis and Applications, vol. 228, no. 1, pp. 206-220, 1998. · Zbl 1031.49016 · doi:10.1006/jmaa.1998.6127
[3] Y. Yao and J. C. Yao, “On modified iterative method for nonexpansive mappings and monotone mappings,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1551-1558, 2007. · Zbl 1121.65064 · doi:10.1016/j.amc.2006.08.062
[4] R. Chen, Y. Su, and H. K. Xu, “Regularization and iteration methods for a class of monotone variational inequalities,” Taiwanese Journal of Mathematics, vol. 13, no. 2B, pp. 739-752, 2009. · Zbl 1179.58008
[5] Y. P. Fang and N. J. Huang, “H-monotone operator and resolvent operator technique for variational inclusions,” Applied Mathematics and Computation, vol. 145, no. 2-3, pp. 795-803, 2003. · Zbl 1030.49008 · doi:10.1016/S0096-3003(03)00275-3
[6] S. Takahashi, W. Takahashi, and M. Toyoda, “Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces,” Journal of Optimization Theory and Applications, vol. 147, no. 1, pp. 27-41, 2010. · Zbl 1208.47071 · doi:10.1007/s10957-010-9713-2
[7] Y. Yao and N. Shahzad, “New methods with perturbations for non-expansive mappings in Hilbert spaces,” Fixed Point Theory and Applications, vol. 2011, article 79, 2011. · Zbl 1270.47066 · doi:10.1186/1687-1812-2011-79
[8] R. T. Rockafellar, “On the maximal monotonicity of subdifferential mappings,” Pacific Journal of Mathematics, vol. 33, pp. 209-216, 1970. · Zbl 0199.47101 · doi:10.2140/pjm.1970.33.209
[9] M. Aslam Noor and T. M. Rassias, “Projection methods for monotone variational inequalities,” Journal of Mathematical Analysis and Applications, vol. 237, no. 2, pp. 405-412, 1999. · Zbl 0933.65076 · doi:10.1006/jmaa.1999.6422
[10] M. A. Noor and Z. Huang, “Some resolvent iterative methods for variational inclusions and nonexpansive mappings,” Applied Mathematics and Computation, vol. 194, no. 1, pp. 267-275, 2007. · Zbl 1193.49010 · doi:10.1016/j.amc.2007.04.037
[11] Y. Yao, Y.-C. Liou, and S. M. Kang, “Two-stepprojection methods for a system of variational inequality problems in Banach spaces,” Journal of Global Optimization. In press. · Zbl 1260.47085 · doi:10.1007/s10898-011-9804-0
[12] Y. Yao, R. Chen, and Y.-C. Liou, “A unified implicit algorithm for solving the triple-hierarchical constrained optimization problem,” Mathematical & Computer Modelling, vol. 55, pp. 1506-1515, 2012. · Zbl 1275.47130 · doi:10.1016/j.mcm.2011.10.041
[13] S. Adly, “Perturbed algorithms and sensitivity analysis for a general class of variational inclusions,” Journal of Mathematical Analysis and Applications, vol. 201, no. 2, pp. 609-630, 1996. · Zbl 0856.65077 · doi:10.1006/jmaa.1996.0277
[14] G. Marino and H.-K. Xu, “Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 336-349, 2007. · Zbl 1116.47053 · doi:10.1016/j.jmaa.2006.06.055
[15] W. Takahashi and M. Toyoda, “Weak convergence theorems for nonexpansive mappings and monotone mappings,” Journal of Optimization Theory and Applications, vol. 118, no. 2, pp. 417-428, 2003. · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[16] T. Suzuki, “Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces,” Fixed Point Theory and Applications, vol. 2005, no. 1, pp. 103-123, 2005. · Zbl 1123.47308 · doi:10.1155/FPTA.2005.103
[17] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society. Second Series, vol. 66, no. 1, pp. 240-256, 2002. · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[18] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, “On a strongly nonexpansive sequence in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 8, no. 3, pp. 471-489, 2007. · Zbl 1142.47030
[19] E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” The Mathematics Student, vol. 63, no. 1-4, pp. 123-145, 1994. · Zbl 0888.49007
[20] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117-136, 2005. · Zbl 1109.90079
[21] Y. Yao, Y.-C. Liou, and J.-C. Yao, “An extragradient method for fixed point problems and variational inequality problems,” Journal of Inequalities and Applications, vol. 2007, Article ID 38752, 12 pages, 2007. · Zbl 1137.47057 · doi:10.1155/2007/38752
[22] Y. Yao, Y.-C. Liou, and Y.-J. Wu, “An extragradient method for mixed equilibrium problems and fixed point problems,” Fixed Point Theory and Applications, vol. 2009, Article ID 632819, 15 pages, 2009. · Zbl 1203.47086 · doi:10.1155/2009/632819
[23] Y. Yao, Y. C. Liou, and G. Marino, “Strong convergence of two iterative algorithms for nonexpansive mappings in Hilbert spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID 279058, 7 pages, 2009. · Zbl 1186.47080 · doi:10.1155/2009/279058
[24] F. Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “On a two-step algorithm for hierarchical fixed point problems and variational inequalities,” Journal of Inequalities and Applications, vol. 2009, Article ID 208692, 13 pages, 2009. · Zbl 1180.47040 · doi:10.1155/2009/208692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.