zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Common fixed point theorems for commutating mappings in fuzzy metric spaces. (English) Zbl 1242.54032
Summary: We generalize Jungck’s theorem [{\it G. Jungck}, Am. Math. Mon. 83, 261--263 (1976; Zbl 0321.54025)] to fuzzy metric spaces and prove common fixed point theorems for commutative mappings in fuzzy metric spaces.

MSC:
54H25Fixed-point and coincidence theorems in topological spaces
54A40Fuzzy topology
WorldCat.org
Full Text: DOI
References:
[1] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2] Z. K. Deng, “Fuzzy Pesudo-metric space,” Journal of Mathematical Analysis and Applications, vol. 86, pp. 74-95, 1982. · Zbl 0501.54003 · doi:10.1016/0022-247X(82)90255-4
[3] M. A. Erceg, “Metric spaces in fuzzy set theory,” Journal of Mathematical Analysis and Applications, vol. 69, no. 1, pp. 205-230, 1979. · Zbl 0409.54007 · doi:10.1016/0022-247X(79)90189-6
[4] O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 12, no. 3, pp. 215-229, 1984. · Zbl 0558.54003 · doi:10.1016/0165-0114(84)90069-1
[5] I. Kramosil and J. Michálek, “Fuzzy metrics and statistical metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336-344, 1975. · Zbl 0319.54002 · eudml:28711
[6] M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385-389, 1988. · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[7] J. X. Fang, “On fixed point theorems in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 46, no. 1, pp. 107-113, 1992. · Zbl 0766.54045 · doi:10.1016/0165-0114(92)90271-5
[8] S. Banach, Theorie les operations Lineaires, Manograie Mathematyezne, Warsaw, Poland, 1932. · Zbl 0005.20901 · eudml:219336
[9] M. Edelstein, “On fixed and periodic points under contractive mappings,” Journal of the London Mathematical Society. Second Series, vol. 37, pp. 74-79, 1962. · Zbl 0113.16503 · doi:10.1112/jlms/s1-37.1.74
[10] I. Istr\ua\ctescu, “A fixed point theorem for mappings with a probabilistic contractive iterate,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 26, no. 3, pp. 431-435, 1981. · Zbl 0476.60006
[11] V. M. Sehgal and A. T. Bharucha-Reid, “Fixed points of contraction mappings on probabilistic metric spaces,” Mathematical Systems Theory, vol. 6, pp. 97-102, 1972. · Zbl 0244.60004 · doi:10.1007/BF01706080
[12] R. Badard, “Fixed point theorems for fuzzy numbers,” Fuzzy Sets and Systems, vol. 13, no. 3, pp. 291-302, 1984. · Zbl 0551.54005 · doi:10.1016/0165-0114(84)90063-0
[13] O. Had\vzić, “Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 29, no. 1, pp. 115-125, 1989. · Zbl 0681.54023 · doi:10.1016/0165-0114(89)90140-1
[14] R. K. Bose and D. Sahani, “Fuzzy mappings and fixed point theorems,” Fuzzy Sets and Systems, vol. 21, no. 1, pp. 53-58, 1987. · Zbl 0609.54032 · doi:10.1016/0165-0114(87)90152-7
[15] D. Butnarin, “Fixed point for fuzzy mappings,” Fuzzy Sets and Systems, vol. 7, pp. 191-207, 1982.
[16] S. S. Chang, “Fixed point theorems for fuzzy mappings,” Fuzzy Sets and Systems, vol. 17, no. 2, pp. 181-187, 1985. · Zbl 0579.54034 · doi:10.1016/0165-0114(85)90055-7
[17] B. S. Lee, Y. J. Cho, and J. S. Jung, “Fixed point theorems for fuzzy mappings and applications,” Korean Mathematical Society. Communications, vol. 11, no. 1, pp. 89-108, 1996. · Zbl 0939.54023
[18] G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no. 4, pp. 261-263, 1976. · Zbl 0321.54025 · doi:10.2307/2318216
[19] B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific Journal of Mathematics, vol. 10, pp. 313-334, 1960. · Zbl 0096.33203 · doi:10.2140/pjm.1960.10.673
[20] G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771-779, 1986. · Zbl 0613.54029 · doi:10.1155/S0161171286000935 · eudml:46151