×

Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion. (English) Zbl 1242.60056

Summary: We establish Talagrand’s \(T_{1}\) and \(T_{2}\) inequalities for the law of the solution of a stochastic differential equation driven by a fractional Brownian motion with Hurst parameter \(H > 1/2\). We use the \(L^{2}\) metric and the uniform metric on the path space of continuous functions on \([0, T]\). These results are applied to study small-time and large-time asymptotics for the solutions of such equations by means of a Hoeffding-type inequality.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60E15 Inequalities; stochastic orderings
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Andrews, G.E., Askey, R. and Roy, R. (1999). Special Functions. Encyclopedia of Mathematics and Its Applications 71 . Cambridge: Cambridge Univ. Press.
[2] Baudoin, F. and Hairer, M. (2007). A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 373-395. · Zbl 1123.60038
[3] Bobkov, S.G., Gentil, I. and Ledoux, M. (2001). Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. (9) 80 669-696. · Zbl 1038.35020
[4] Bobkov, S.G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1-28. · Zbl 0924.46027
[5] Bolley, F. and Villani, C. (2005). Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities. Ann. Fac. Sci. Toulouse Math. (6) 14 331-352. · Zbl 1087.60008
[6] Coutin, L. and Qian, Z. (2002). Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 108-140. · Zbl 1047.60029
[7] Decreusefond, L. (2005). Stochastic integration with respect to Volterra processes. Ann. Inst. H. Poincaré Probab. Statist. 41 123-149. · Zbl 1071.60040
[8] Djellout, H., Guillin, A. and Wu, L. (2004). Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32 2702-2732. · Zbl 1061.60011
[9] Fernique, X. (1975). Regularité des trajectoires des fonctions aléatoires gaussiennes. In École d’Été de Probabilités de Saint-Flour , IV- 1974. Lecture Notes in Math. 480 1-96. Berlin: Springer. · Zbl 0331.60025
[10] Feyel, D. and Üstünel, A.S. (2002). Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334 1025-1028. · Zbl 1036.60004
[11] Feyel, D. and Üstünel, A.S. (2004). Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Related Fields 128 347-385. · Zbl 1055.60052
[12] Föllmer, H. (1985). An entropy approach to the time reversal of diffusion processes. In Stochastic Differential Systems ( Marseille-Luminy , 1984). Lecture Notes in Control and Inform. Sci. 69 156-163. Berlin: Springer. · Zbl 0562.60083
[13] Föllmer, H. (1986). Time reversal on Wiener space. In Stochastic Processes - Mathematics and Physics ( Bielefeld , 1984). Lecture Notes in Math. 1158 119-129. Berlin: Springer. · Zbl 0582.60078
[14] Garsia, A.M., Rodemich, E. and Rumsey, Jr., H. (1970/1971). A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. J. 20 565-578. · Zbl 0252.60020
[15] Gourcy, M. and Wu, L. (2006). Logarithmic Sobolev inequalities of diffusions for the L 2 metric. Potential Anal. 25 77-102. · Zbl 1098.60027
[16] Gozlan, N. (2006). Integral criteria for transportation-cost inequalities. Electron. Comm. Probab. 11 64-77 (electronic). · Zbl 1112.60009
[17] Gross, L. (1975). Logarithmic Sobolev inequalities. Amer. J. Math. 97 1061-1083. · Zbl 0318.46049
[18] Hairer, M. (2005). Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33 703-758. · Zbl 1071.60045
[19] Hu, Y. and Nualart, D. (2007). Differential equations driven by Hölder continuous functions of order greater than 1/2. In Stochastic Analysis and Applications. Abel Symp. 2 399-413. Berlin: Springer. · Zbl 1144.34038
[20] Ledoux, M. (2001). The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89 . Providence, RI: Amer. Math. Soc. · Zbl 0995.60002
[21] Lyons, T. (1994). Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett. 1 451-464. · Zbl 0835.34004
[22] Maslowski, B. and Schmalfuss, B. (2004). Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl. 22 1577-1607. · Zbl 1062.60060
[23] Nourdin, I. and Simon, T. (2006). On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76 907-912. · Zbl 1091.60008
[24] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Probability and Its Applications ( New York ). Berlin: Springer. · Zbl 1099.60003
[25] Nualart, D. and Răşcanu, A. (2002). Differential equations driven by fractional Brownian motion. Collect. Math. 53 55-81. · Zbl 1018.60057
[26] Nualart, D. and Saussereau, B. (2009). Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 391-409. · Zbl 1169.60013
[27] Otto, F. and Villani, C. (2000). Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 361-400. · Zbl 0985.58019
[28] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993). Fractional Integrals and Derivatives . Yverdon: Gordon and Breach Science Publishers. · Zbl 0818.26003
[29] Saussereau, B. (2006). Compactness of Itô functionals associated to differential equations driven by fractional Brownian motions. Preprint, Université de Franche-Comté.
[30] Talagrand, M. (1996). Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 587-600. · Zbl 0859.46030
[31] Wang, F.-Y. (2002). Transportation cost inequalities on path spaces over Riemannian manifolds. Illinois J. Math. 46 1197-1206. · Zbl 1031.58022
[32] Wang, F.-Y. (2004). Probability distance inequalities on Riemannian manifolds and path spaces. J. Funct. Anal. 206 167-190. · Zbl 1048.58013
[33] Wu, L.-M. and Zhang, Z.-L. (2004). Talagrand’s T 2 -transportation inequality w.r.t. a uniform metric for diffusions. Acta Math. Appl. Sin. Engl. Ser. 20 357-364. · Zbl 1055.60009
[34] Young, L.C. (1936). An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67 251-282. · Zbl 0016.10404
[35] Zähle, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 333-374. · Zbl 0918.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.