On \(\Lambda \)-coalescents with dust component. (English) Zbl 1242.60077

There is a class of \(\Lambda\)-coalescents \(\Pi_\infty\) which stay infinite because infinitely many of the original particles do not engage in collisions before any given time. For such coalescents restricted to \(n\) particles (denote them by \(\Pi_n\)), the present paper investigates the weak convergence of the number of collisions and the absorption time as \(n\) becomes large. The paper proves that most of the collisions of \(\Pi_n\) will involve some of the original \(n\) particles for large \(n\). In particular, the behavior of the number of collisions and the absorption time can be derived from that of analogous quantities associated with the evolution of singletons. The total frequency of singletons in \(\Pi_\infty\) evolves like a multiplicative subordinator. For \(\Pi_n\), the engagement of original \(n\) particles in their first collisions follows a simple Markovian process which has been studied in the context of regenerative composition structures derived from subordinators. A coupling of \(\Pi_\infty\) with a subordinator enables one to apply known results about the level-passage for subordinators, and about the asymptotics of regenerative composition structures.


60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60C05 Combinatorial probability
60F05 Central limit and other weak theorems
60G09 Exchangeability for stochastic processes
60K05 Renewal theory
Full Text: DOI arXiv


[1] Barbour, A. D. and Gnedin, A. V. (2006). Regenerative compositions in the case of slow variation. Stoch. Process. Appl. 116 , 1012-1047. · Zbl 1114.60030
[2] Berestycki, N. (2009). Recent Progress in Coalescent Theory (Ensaios Matemáticos 16 ). Sociedade Brasileira de Matemática, Rio de Janeiro. · Zbl 1204.60002
[3] Bertoin, J. (1996). Subordinators: Examples and Applications (Lecture Notes Math. 1727 ). Springer, Berlin. · Zbl 0955.60046
[4] Bertoin, J. (2010). Exchangeable coalescents. Lecture Notes, ETH Zürich. Available at http://www.fim.math. ethz.ch/lectures/Lectures_Bertoin.pdf.
[5] Bingham, N. H. (1972). Limit theorems for regenerative phenomena, recurrent events and renewal theory. Z. Wahrscheinlichkeitsth. 21 , 20-44. · Zbl 0212.20001
[6] Bingham N. H., Goldie C. M. and Teugels, J. L. (1989). Regular Variation . Cambridge University Press. · Zbl 0667.26003
[7] Drmota, M., Iksanov, A., Moehle, M. and Roesler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34 , 319-336. · Zbl 1187.05068
[8] Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Z. Wahrscheinlichkeitsth. 64 , 275-301. · Zbl 0506.60097
[9] Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Process. Relat. Fields 15 , 387-416. · Zbl 1203.60110
[10] Gnedin, A. and Pitman, J. (2005). Regenerative composition structures. Ann. Prob. 33 , 445-479. · Zbl 1070.60034
[11] Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in \(\Lambda\)-coalescents. Electron. J. Prob. 12 , 1547-1567. · Zbl 1190.60061
[12] Gnedin, A., Iksanov, A. and Marynych, A. (2010). Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stoch. Process. 16 , 44-57. · Zbl 1249.60029
[13] Gnedin, A., Iksanov, A. and Möhle, M. (2008). On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Prob. 45 , 1186-1195. · Zbl 1159.60016
[14] Gnedin, A., Iksanov, A. and Roesler, U. (2008). Small parts in the Bernoulli sieve. Discrete Math. Theoret. Comput. Sci. AI , 235-242. · Zbl 1357.60096
[15] Gnedin, A., Pitman, J. and Yor, M. (2006). Asymptotic laws for compositions derived from transformed subordinators. Ann. Prob. 34 , 468-492. · Zbl 1142.60327
[16] Gnedin, A., Pitman, J. and Yor, M. (2006). Asymptotic laws for regenerative compositions: gamma subordinators and the like. Prob. Theory Relat. Fields 135 , 576-602. · Zbl 1099.60023
[17] Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Prob. 10 , 718-745. · Zbl 1109.60060
[18] Haas, B. and Miermont, G. (2011). Self-similar scaling limits of non-increasing Markov chains. To appear in Bernoulli . · Zbl 1263.92034
[19] Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Prob. 12 , 28-35. · Zbl 1133.60012
[20] Iksanov, A. and Möhle, M. (2008). On the number of jumps of random walks with a barrier. Adv. Appl. Prob. 40 , 206-228. · Zbl 1157.60041
[21] Iksanov, A., Marynych, A. and Möhle, M. (2009). On the number of collisions in beta(2, \(b\))-coalescents. Bernoulli 15 , 829-845. · Zbl 1208.60081
[22] Möhle, M. (2010). Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stoch. Process. Appl. 120 , 2159-2173 · Zbl 1214.60037
[23] Negadailov, P. (2010). Limit theorems for random recurrences and renewal-type processes. Doctoral Thesis, Utrecht University. Available at http://igitur-archive.library.uu.nl/dissertations/.
[24] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27 , 1870-1902. · Zbl 0963.60079
[25] Pitman, J. (2006). Combinatorial Stochastic Processes (Lecture Notes Math. 1875 ). Springer, Berlin. · Zbl 1103.60004
[26] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 , 1116-1125. · Zbl 0962.92026
[27] Schweinsberg, J. (2000). A necessary and sufficient condition for the \(\Lambda\)-coalescent to come down from infinity. Electron. Commun. Prob. 5 , 1-11. · Zbl 0953.60072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.