Lee, H. Y.; Jung, N. S.; Ryoo, C. S. A numerical investigation of the roots of the second kind \(\lambda\)-Bernoulli polynomials. (English) Zbl 1242.65093 Neural Parallel Sci. Comput. 19, No. 3-4, 295-306 (2011). Summary: We consider a new type of the Apostol Bernoulli numbers and polynomials. We call them the second kind \(\lambda\)-Bernoulli numbers \(B_{n,\lambda}\) and polynomials \(B_{n,\lambda}(x)\). We also observe the behavior of complex roots of the second kind \(\lambda\)-Bernoulli polynomials \(B_{n,\lambda}(x)\), using numerical investigation. Finally, we give a table for the solutions of the second kind \(\lambda\)-Bernoulli polynomials \(B_{n,\lambda}(x)\). Cited in 1 Document MSC: 65H04 Numerical computation of roots of polynomial equations 11B68 Bernoulli and Euler numbers and polynomials 11S40 Zeta functions and \(L\)-functions 11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.) Keywords:numerical examples; Apostol Bernoulli numbers; complex roots; \(\lambda\)-Bernoulli polynomials PDF BibTeX XML Cite \textit{H. Y. Lee} et al., Neural Parallel Sci. Comput. 19, No. 3--4, 295--306 (2011; Zbl 1242.65093) OpenURL