zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New exact solutions to the KdV-Burgers-Kuramoto equation with the Exp-function method. (English) Zbl 1242.65270
Summary: Based on the characteristics of the truncated Painlevé expansion method and the Exp-function method, new generalized solitary wave solutions are constructed for the KdV-Burgers-Kuramoto equation, which cannot be directly constructed from the Exp-function method. This work highlights the power of the Exp-function method in providing generalized solitary wave solutions of different physical structures.

MSC:
65N99Numerical methods for BVP of PDE
35Q53KdV-like (Korteweg-de Vries) equations
WorldCat.org
Full Text: DOI
References:
[1] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 700-708, 2006. · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[2] S. D. Zhu, “Exp-function method for the Hybrid-Lattice system,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 3, pp. 461-464, 2007.
[3] S. D. Zhu, “Exp-function method for the discrete mKdV lattice,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 3, pp. 465-468, 2007.
[4] S. Zhang, “Explicit and exact nontravelling wave solutions of Konopelchenko-Dubrovsky equations,” Zeitschrift fur Naturforschung A, vol. 62, no. 12, pp. 689-697, 2007. · Zbl 1203.35256 · http://www.znaturforsch.com/aa/v62a/c62a.htm
[5] S. Zhang, “Application of Exp-function method to a KdV equation with variable coefficients,” Physics Letters A, vol. 365, no. 5-6, pp. 448-453, 2007. · Zbl 1203.35255 · doi:10.1016/j.physleta.2007.02.004
[6] S. Zhang, “Exp-function method: solitary, periodic and rational wave solutions of nonlinear evolution equations,” Nonlinear Science Letters A, vol. 1, no. 2, pp. 143-146, 2010.
[7] A. Bekir and A. Boz, “Exact solutions for a class of nonlinear partial differential equations using exp-function method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 4, pp. 505-512, 2007.
[8] J. H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” International Journal of Modern Physics B, vol. 22, no. 21, pp. 3487-3578, 2008. · Zbl 1149.76607 · doi:10.1142/S0217979208048668
[9] X. W. Zhou, Y. X. Wen, and J. H. He, “Exp-function method to solve the nonlinear dispersive K(m,n) equations,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, no. 3, pp. 301-306, 2008.
[10] C. Q. Dai and Y. Y. Wang, “Exact travelling wave solutions of toda lattice equations obtained via the exp-function method,” Zeitschrift fur Naturforschung A, vol. 63, no. 10-11, pp. 657-662, 2008.
[11] A. Bekir and A. Boz, “Exact solutions for nonlinear evolution equations using Exp-function method,” Physics Letters A, vol. 372, no. 10, pp. 1619-1625, 2008. · Zbl 1217.35151 · doi:10.1016/j.physleta.2007.10.018
[12] C. Chun, “Solitons and periodic solutions for the fifth-order KdV equation with the Exp-function method,” Physics Letters A, vol. 372, no. 16, pp. 2760-2766, 2008. · Zbl 1220.35148 · doi:10.1016/j.physleta.2008.01.005
[13] J.-H. He and L.-N. Zhang, “Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method,” Physics Letters A, vol. 372, no. 7, pp. 1044-1047, 2008. · Zbl 1217.35152 · doi:10.1016/j.physleta.2007.08.059
[14] A. Ebaid, “Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method,” Physics Letters A, vol. 365, no. 3, pp. 213-219, 2007. · Zbl 1203.35213 · doi:10.1016/j.physleta.2007.01.009
[15] M. A. Noor, K. I. Noor, A. Waheed, and E. A. Al-Said, “Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation,” Computers & Mathematics with Applications, vol. 62, no. 4, pp. 2126-2131, 2011. · Zbl 1231.35210 · doi:10.1016/j.camwa.2011.06.060
[16] E. M. E. Zayed and M. A. M. Abdelaziz, “Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods,” Applied Mathematics and Computation, vol. 218, no. 5, pp. 2259-2268, 2011. · Zbl 1229.35278 · doi:10.1016/j.amc.2011.07.043
[17] K. Parand and J. A. Rad, “Exp-function method for some nonlinear PDE’s and a nonlinear ODE’s,” Journal of King Saud University, vol. 24, no. 1, pp. 1-10, 2012. · doi:10.1016/j.jksus.2010.08.004
[18] Y. Kuramoto and T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,” Progress of Theoretical Physics, vol. 55, no. 2, pp. 356-369, 1967.
[19] T. Kawahara and M. Tanaka, “Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation,” Physics Letters A, vol. 97, no. 8, pp. 311-314, 1983. · doi:10.1016/0375-9601(83)90648-5
[20] S. Zhang, “New exact solutions of the KdV-Burgers-Kuramoto equation,” Physics Letters A, vol. 358, no. 5-6, pp. 414-420, 2006. · Zbl 1142.35592 · doi:10.1016/j.physleta.2006.05.071
[21] E. Yusufo\uglu and A. Bekir, “The tanh and the sine-cosine methods for exact solutions of the MBBM and the Vakhnenko equations,” Chaos, Solitons & Fractals, vol. 38, no. 4, pp. 1126-1133, 2008. · Zbl 1152.35485 · doi:10.1016/j.chaos.2007.02.004
[22] E. Fan and H. Zhang, “A note on the homogeneous balance method,” Physics Letters A, vol. 246, no. 5, pp. 403-406, 1998. · Zbl 1125.35308 · doi:10.1016/S0375-9601(98)00547-7
[23] H. B. Lan and K. L. Wang, “Exact solutions for two nonlinear equations. I,” Journal of Physics A, vol. 23, no. 17, pp. 3923-3928, 1990. · Zbl 0718.35020 · doi:10.1088/0305-4470/23/17/021
[24] L. Yang and K. Q. Yang, “Solitary wave solutions of generalized Kuramoto-Sivashinsky equations,” Journal of Lanzhou University, vol. 34, no. 4, pp. 53-55, 1998 (Chinese).
[25] J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” Journal of Mathematical Physics, vol. 24, no. 3, pp. 522-526, 1983. · Zbl 0531.35069 · doi:10.1063/1.525875
[26] P. A. Clarkson and E. L. Mansfield, “On a shallow water wave equation,” Nonlinearity, vol. 7, no. 3, pp. 975-1000, 1994. · Zbl 0803.35111 · doi:10.1088/0951-7715/7/3/012