zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Consistency analysis of spectral regularization algorithms. (English) Zbl 1242.68264
Summary: We investigate the consistency of spectral regularization algorithms. We generalize the usual definition of regularization function to enrich the content of spectral regularization algorithms. Under a more general prior condition, using refined error decompositions and techniques of operator norm estimation, satisfactory error bounds and learning rates are proved.

MSC:
68T05Learning and adaptive systems
WorldCat.org
Full Text: DOI
References:
[1] F. Bauer, S. Pereverzev, and L. Rosasco, “On regularization algorithms in learning theory,” Journal of Complexity, vol. 23, no. 1, pp. 52-72, 2007. · Zbl 1109.68088 · doi:10.1016/j.jco.2006.07.001
[2] H. Sun and Q. Wu, “Least square regression with indefinite kernels and coefficient regularization,” Applied and Computational Harmonic Analysis, vol. 30, no. 1, pp. 96-109, 2011. · Zbl 1225.65015 · doi:10.1016/j.acha.2010.04.001
[3] L. Lo Gerfo, L. Rosasco, F. Odone, E. De Vito, and A. Verri, “Spectral algorithms for supervised learning,” Neural Computation, vol. 20, no. 7, pp. 1873-1897, 2008. · Zbl 1147.68643 · doi:10.1162/neco.2008.05-07-517
[4] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bulletin of the American Mathematical Society, vol. 39, no. 1, pp. 1-49, 2002. · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[5] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Advances in Computational Mathematics, vol. 13, no. 1, pp. 1-50, 2000. · Zbl 0939.68098 · doi:10.1023/A:1018946025316
[6] T. Poggio and S. Smale, “The mathematics of learning: dealing with data,” Notices of the American Mathematical Society, vol. 50, no. 5, pp. 537-544, 2003. · Zbl 1083.68100 · http://www.ams.org/notices/200305/200305-toc.html
[7] S. Smale and D.-X. Zhou, “Learning theory estimates via integral operators and their approximations,” Constructive Approximation, vol. 26, no. 2, pp. 153-172, 2007. · Zbl 1127.68088 · doi:10.1007/s00365-006-0659-y
[8] H. Sun and Q. Wu, “A note on application of integral operator in learning theory,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 416-421, 2009. · Zbl 1165.68059 · doi:10.1016/j.acha.2008.10.002
[9] H. Sun and Q. Wu, “Regularized least square regression with dependent samples,” Advances in Computational Mathematics, vol. 32, no. 2, pp. 175-189, 2010. · Zbl 1191.68535 · doi:10.1007/s10444-008-9099-y
[10] Q. Wu, Y. Ying, and D.-X. Zhou, “Learning rates of least-square regularized regression,” Foundations of Computational Mathematics, vol. 6, no. 2, pp. 171-192, 2006. · Zbl 1100.68100 · doi:10.1007/s10208-004-0155-9
[11] T. Zhang, “Leave-one-out bounds for kernel methods,” Neural Computation, vol. 15, pp. 1397-1437, 2003. · Zbl 1085.68144 · doi:10.1162/089976603321780326
[12] V. N. Vapnik, Statistical Learning Theory, A Wiley-Interscience, New York, NY, USA, 1998. · Zbl 0935.62007
[13] Q. Guo and H. W. Sun, “Asymptotic convergence of coefficient regularization based on weakly depended samples,” Journal of Jinan University, vol. 24, no. 1, pp. 99-103, 2010.
[14] Q. Wu and D.-X. Zhou, “Learning with sample dependent hypothesis spaces,” Computers & Mathematics with Applications, vol. 56, no. 11, pp. 2896-2907, 2008. · Zbl 1165.68388 · doi:10.1016/j.camwa.2008.09.014
[15] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient descent learning,” Constructive Approximation, vol. 26, no. 2, pp. 289-315, 2007. · Zbl 1125.62035 · doi:10.1007/s00365-006-0663-2
[16] H. Sun and Q. Wu, “Application of integral operator for regularized least-square regression,” Mathematical and Computer Modelling, vol. 49, no. 1-2, pp. 276-285, 2009. · Zbl 1165.45310 · doi:10.1016/j.mcm.2008.08.005
[17] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. 1 of Elementary Theory, Academic Press, San Diego, Calif, USA, 1983. · Zbl 0518.46046
[18] I. Pinelis, “Optimum bounds for the distributions of martingales in Banach spaces,” The Annals of Probability, vol. 22, no. 4, pp. 1679-1706, 1994. · Zbl 0836.60015 · doi:10.1214/aop/1176988477