×

zbMATH — the first resource for mathematics

Local/global model order reduction strategy for the simulation of quasi-brittle fracture. (English) Zbl 1242.74130
Summary: This paper proposes a novel technique to reduce the computational burden associated with the simulation of localized failure. The proposed methodology affords the simulation of damage initiation and propagation while concentrating the computational effort where it is most needed, that is, in the localization zones. To do so, a local/global technique is devised where the global (slave) problem (far from the zones undergoing severe damage and cracking) is solved for in a reduced space computed by the classical proper orthogonal decomposition while the local (master) degrees of freedom (associated with the part of the structure where most of the damage is taking place) are fully resolved. Both domains are coupled through a local/global technique. This method circumvents the difficulties associated with model order reduction for the simulation of highly nonlinear mechanical failure and offers an alternative or complementary approach to the development of multiscale fracture simulators.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
74R05 Brittle damage
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Moës, A finite element method for crack growth without remeshing, International Journal of Engineering Science 46 pp 131– (1999) · Zbl 0955.74066
[2] Allix, Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens, International Journal of Fracture 77 pp 11– (1996) · doi:10.1007/BF00037233
[3] Jefferson, A model for cementitious composite materials based on micro-mechanical solutions and damage-contact theory, Computers and Structures 88 pp 1361– (2009) · doi:10.1016/j.compstruc.2008.09.006
[4] Ladevèze, An enhanced mesomodel for laminates based on micromechanics, Composites Science and Technology 62 (4) pp 533– (2002) · doi:10.1016/S0266-3538(01)00145-2
[5] Grassl, Damage-plastic model for concrete failure, International Journal of Solids and Structures 43 (22-23) pp 7166– (2006) · Zbl 1120.74777 · doi:10.1016/j.ijsolstr.2006.06.032
[6] Rabczuk, A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures, Engineering Fracture Mechanics 75 (16) pp 4740– (2008) · doi:10.1016/j.engfracmech.2008.06.019
[7] Fish, Computational plasticity for composite structures based on mathematical homogenization: theory and practice, Computer Methods in Applied Mechanics and Engineering 148 pp 53– (1997) · Zbl 0924.73145 · doi:10.1016/S0045-7825(97)00030-3
[8] Feyel, FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Computer Methods in Applied Mechanics and Engineering 183 (3-4) pp 309– (2000) · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[9] Xiao, Two-scale asymptotic homogenisation-based finite element analysis of composite materials, Computational and Experimental Methods in Structures - Multiscale Modeling in Solid Mechanics: Computational Approaches 3 pp 43– (2010) · doi:10.1142/9781848163089_0002
[10] Belytschko, Multiscale aggregating discontinuities: a method for circumventing loss of material stability, International Journal for Numerical Methods in Engineering 73 pp 869– (2007) · Zbl 1195.74008 · doi:10.1002/nme.2156
[11] Nguyen, Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks, Computer Methods in Applied Mechanics and Engineering 200 (9-12) pp 1220– (2010) · Zbl 1225.74070 · doi:10.1016/j.cma.2010.10.013
[12] Cazès, A thermodynamic method for the construction of a cohesive law from a nonlocal damage model, International Journal of Solids and Structures 46 (6) pp 1476– (2009) · Zbl 1236.74013 · doi:10.1016/j.ijsolstr.2008.11.019
[13] Verhoosel, Computational homogenization for adhesive and cohesive failure in quasi-brittle solids, International Journal for numerical Methods in Engineering 83 (8-9) pp 1155-1179– (2010) · Zbl 1197.74139 · doi:10.1002/nme.2854
[14] Barrault, An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus de Mathématiques 339 (9) pp 667– (2004) · Zbl 1061.65118 · doi:10.1016/j.crma.2004.08.006
[15] Ryckelynck, A priori hyperreduction method: an adaptive approach, Journal of Computational Physics 202 (1) pp 346– (2005) · Zbl 1288.65178 · doi:10.1016/j.jcp.2004.07.015
[16] Niroomandi, Model order reduction for hyperelastic materials, International Journal for Numerical Methods in Engineering 81 (9) pp 1180– (2009)
[17] Verdon, Reduced-order modelling for solving linear and non-linear equations, International Journal for Numerical Methods in Biomedical Engineering 27 (1) pp 43– (2009) · Zbl 1210.65159 · doi:10.1002/cnm.1286
[18] Kerfriden, Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems, Computer Methods in Applied Mechanics and Engineering 200 (5-8) pp 850– (2010) · Zbl 1225.74092 · doi:10.1016/j.cma.2010.10.009
[19] Antoulas, Approximation of large-scale dynamical systems: an overview, International Journal of Applied Mathematics and Computer Science 11 (5) pp 1093– (2001) · Zbl 1024.93008
[20] Rayleigh, The Theory of Sound (1877) · JFM 15.0848.02
[21] Dickens, A critique of mode acceleration and modal truncation augmentation methods for modal response analysis, Computers and Structures 62 (6) pp 985– (1997) · Zbl 0900.70255 · doi:10.1016/S0045-7949(96)00315-X
[22] Craig, Coupling of substructures for dynamic analysis, American Institute of Aeronautics and Astronautics 6 (7) pp 1313– (1968) · Zbl 0159.56202 · doi:10.2514/3.4741
[23] Kerschen, Nonlinear normal modes, part I: a useful framework for the structural dynamicist, Mechanical Systems and Signal Processing 23 (1) pp 170– (2009) · doi:10.1016/j.ymssp.2008.04.002
[24] Sirovich, Turbulence and the dynamics of coherent structures. Part I: coherent structures, Quarterly of Applied Mathematics 45 pp 561– (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[25] Karhunen, Über lineare methoden in der wahrscheinlichkeitsrechnung, Annales Academiae Scientiarum Fennicae Series A1, Mathematical Physics 37 pp 1– (1947)
[26] Loeve, Probability Theory (1963)
[27] Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering 196 (45-48) pp 4521– (2007) · Zbl 1173.80311 · doi:10.1016/j.cma.2007.05.016
[28] Chinesta, Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, Archives of Computational Methods in Engineering-State of the Art Reviews 17 (4) pp 327– (2010) · Zbl 1269.65106 · doi:10.1007/s11831-010-9049-y
[29] Ladevèze, The LATIN multiscale computational method and the proper generalized decomposition, Computer Methods in Applied Mechanics and Engineering 199 (21-22) pp 1287– (2009) · Zbl 1227.74111 · doi:10.1016/j.cma.2009.06.023
[30] Nouy, Generalized spectral decomposition method for stochastic non linear problems, Journal of Computational Physics 228 (1) pp 202– (2008) · Zbl 1157.65009 · doi:10.1016/j.jcp.2008.09.010
[31] Galland, A global model reduction approach for 3D fatigue crack growth with confined plasticity, Computer Methods in Applied Mechanics and Engineering 200 (5-18) pp 699– (2010)
[32] Rixen, A dual Craig-Bampton method for dynamic substructuring, Journal of Computational and Applied Mathematics 168 (1-2) pp 383– (2004) · Zbl 1107.70303 · doi:10.1016/j.cam.2003.12.014
[33] Markovic, Partitioning based reduced order modelling approach for transient analyses of large structures, Engineering Computations 26 pp 46– (2009) · Zbl 1257.74160 · doi:10.1108/02644400910924807
[34] Ammar, Coupling finite elements and reduced approximation bases, European Journal of Computational Mechanics 18 (5-6) pp 445– (2009) · Zbl 1278.76051
[35] Ryckelynck, On the a priori model reduction: overview and recent developments, Archives of Computational Methods in Engineering-State of the Art Reviews 13 (1) pp 91– (2006) · Zbl 1142.76462 · doi:10.1007/BF02905932
[36] Farhat, Implicit parallel processing in structural mechanics, Computational Mechanics Advances 2 pp 1– (1994) · Zbl 0805.73062
[37] Kerfriden, A three-scale domain decomposition method for the 3D analysis of debonding in laminates, Computational Mechanics 44 (3) pp 343– (2009) · Zbl 1166.74039 · doi:10.1007/s00466-009-0378-3
[38] Gendre, Non-intrusive and exact global/local techniques for structural problems with local plasticity, Computational Mechanics 44 (2) pp 233– (2009) · Zbl 1165.74040 · doi:10.1007/s00466-009-0372-9
[39] Allix, A relocalization technique for the multiscale computation of delamination in composite structures, Computer Modeling in Engineering and Sciences 55 (3) pp 271– (2010) · Zbl 1231.74398
[40] Saad, Iterative Methods for Sparse Linear Systems Iterative Methods for Sparse Linear Systems (2003) · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[41] Knoll, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, Journal of Computational Physics 193 (2) pp 357– (2004) · Zbl 1036.65045 · doi:10.1016/j.jcp.2003.08.010
[42] Dembo, Inexact Newton methods, SIAM Journal on Numerical Analyses 19 (2) pp 400– (1982) · Zbl 0478.65030 · doi:10.1137/0719025
[43] Risler, Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems, Numerical Algorithms 23 (1) pp 1– (2000) · Zbl 0951.65047 · doi:10.1023/A:1019187614377
[44] Dostál, Conjugate gradient method with preconditioning by projector, International Journal of Computer Mathematics 23 (3) pp 315– (1988) · Zbl 0668.65034 · doi:10.1080/00207168808803625
[45] Riks, The application of Newton’s method to the problem of elastic stability, Journal of Applied Mechanics 39 (4) pp 1060– (1972) · Zbl 0254.73047 · doi:10.1115/1.3422829
[46] Gosselet P Méthodes de décomposition de domaine et méthodes d’accélération pour les problèmes multichamps en mécanique non-linéaire PhD Thesis 2003
[47] Astrid, Missing point estimation in models described by proper orthogonal decomposition, IEEE Transactions on Automatic Control 53 (10) pp 2237– (2008) · Zbl 1367.93110 · doi:10.1109/TAC.2008.2006102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.