×

Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a Lie group analysis. (English) Zbl 1242.76192

Summary: Heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter \(k_{1}\), source/sink parameter \(\lambda \) and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.

MSC:

76M15 Boundary element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Elbashbeshy, E. M.A.; Basid, M. A.A., Heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection, Appl Math Comput, 158, 799-807 (2004) · Zbl 1098.76066
[2] Nazar, R.; Amin, N.; Filip, D.; Pop, I., Unsteady boundary layer flow in the region of the stagnation-point on a stretching sheet, Int J Eng Sci, 42, 1241-1253 (2004) · Zbl 1211.76042
[3] Layek, G. C.; Mukhopadhyay, S.; Samad, Sk. A., Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing, Int Commun Heat Mass Transfer, 34, 347-356 (2007)
[4] Ishak, A.; Nazar, R.; Pop, I., Magnaetohydrodynamic stagnation point flow towards a stretching vertical sheet, Magnaetohydrodynamic, 42, 17-30 (2006)
[5] Raptis, A.; Perdikis, C., Viscous flow over a non-linearly stretching sheet in the presence of chemical reaction and magnetic field, Int J Non-Linear Mech, 41, 527-529 (2006) · Zbl 1160.76436
[6] Prasad, K. V.; Vajravelu, K.; Datti, P. S., The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet, Int J Thermal Sci, 49, 603-610 (2010)
[7] Abel, M. S.; Sanjayanand, E.; Nandeppanavar, M. M., Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipations, Commun Nonlinear Sci Numer Simulat, 13, 1808-1821 (2008) · Zbl 1221.76025
[8] Prasad, K. V.; Pal, D.; Umesh, V.; Rao, N. S.P., The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet, Commun Nonlinear Sci Numer Simulat, 15, 331-344 (2010) · Zbl 1221.76238
[9] Yacob, N. A.; Ishak, A., I. Pop. Falkner-Skan problem for a static or moving wedge in nanofluids, Int J Thermal Sci, 50, 133-139 (2011)
[10] Congedo PM, Collura S, Congedo PM. Modeling and analysis of natural convection heat transfer in nanofluids. In: Proc ASME Summer Heat Transfer Conf 2009, vol. 3, 2009. p. 569-79.; Congedo PM, Collura S, Congedo PM. Modeling and analysis of natural convection heat transfer in nanofluids. In: Proc ASME Summer Heat Transfer Conf 2009, vol. 3, 2009. p. 569-79.
[11] Hamad, M. A.A.; Pop, I.; Ismail, A. I., Magnetic field effects on free convection flow of a nanofluid past a semi-infinite vertical flat plate, Nonlinear Analysis: Real World Appl, 12, 1338-1346 (2011) · Zbl 1402.76155
[12] Buongiorno, J., Convective transport in nanofluids, ASME J Heat Transfer, 128, 240-250 (2006)
[13] Hamad, M. A.A., Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field, Int Commun Heat Mass Transfer, 38, 487-492 (2011)
[14] Khan, W. A.; Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet, Int J Heat Mass Transfer, 53, 2477-2483 (2010) · Zbl 1190.80017
[15] Abu-Nada, E.; Chamkha, A. J., Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-water nanofluid, Int J Thermal Sci, 49, 2339-2352 (2010)
[16] Das, S. K.; S Choi, S. U.; Yu, W.; Pradeep, T., Nanofluids: Science and Technology (2007), Wiley: Wiley New Jersey
[17] Kakaç, S.; Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids, Int J Heat Mass Transfer, 52, 3187-3196 (2009) · Zbl 1167.80338
[18] Muthtamilselvan, M.; Kandaswamy, P.; Lee, J., Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure, Commun Nonlinear Sci Numer Simulat, 15, 1501-1510 (2010) · Zbl 1221.76019
[19] Ibrahim, F. S.; Mansour, M. A.; Hamad, M. A.A., Lie-group analysis of radiative and magnetic field effects on free convection and mass transfer flow past a semi-infinite vertical flat plate, Elect J Diff Eq, 2005, 1-17 (2005) · Zbl 1070.35033
[20] Ibrahim, F. S.; Mansour, M. A.; Hamad, M. A.A., Similarity solution of laminar flow due to a rotating frustum of a cone, J Egyptian Math Soc, 15, 233-245 (2007) · Zbl 1139.76056
[21] Pandey, M.; Pandey, B. D.; Sharma, V. D., Symmetry groups and similarity solutions for the system of equations for a viscous compressible fluid, Appl Math Comput, 215, 681-685 (2009) · Zbl 1172.76043
[22] Jalil M, Asghar S, Mushtaq M. Lie group analysis of mixed convection flow with mass transfer over a stretching surface with suction or injection. Math Prob Eng. Article ID 264901; 2010. doi:10.1155/2010/264901; Jalil M, Asghar S, Mushtaq M. Lie group analysis of mixed convection flow with mass transfer over a stretching surface with suction or injection. Math Prob Eng. Article ID 264901; 2010. doi:10.1155/2010/264901 · Zbl 1202.76055
[23] Hamad MAA, Ismail AI. A new class of similarity solution of free convection boundary layer flow over cylinders of elliptic cross-section with constant surface heat flux, Appl. Math. Sci., in press.; Hamad MAA, Ismail AI. A new class of similarity solution of free convection boundary layer flow over cylinders of elliptic cross-section with constant surface heat flux, Appl. Math. Sci., in press.
[24] Olver, P. J., Application of Lie groups to differential equations (1989), Springer: Springer New York, NY, USA · Zbl 0743.58003
[25] Bluman, G. M.; Kumei, S., Symmetries and differential equations (1989), Springer-Verlag · Zbl 0698.35001
[26] Hill, J. M., Differential equations and group methods for scientists and engineers (1992), CRC Press: CRC Press Boca Raton · Zbl 0847.34003
[27] Cantwell, B. J., Introduction to symmetry analysis (2003), Cambridge University Press · Zbl 1033.65001
[28] Ibragimov, H.; Kovalev, V. F., Approximate and re-norm group symmetry (2009), Springer · Zbl 1170.22001
[29] Perc, M., Visualizing the attraction of strange attractors, Eur J Phys, 26, 579-587 (2005) · Zbl 1522.37084
[30] Khan, W. A.; Pop, I., Boundary-layer flow of a nanofluid past a stretching sheet, Int J Heat Mass Transfer, 53, 2477-2483 (2010) · Zbl 1190.80017
[31] Nield, D. A.; Kuznetsov, A. V., The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int J Heat Mass Transfer, 52, 5792-5795 (2009) · Zbl 1177.80046
[32] Wang, C. Y., free convection on a vertical stretching surface, J Appl Math Mech (ZAMM), 69, 418-420 (1989) · Zbl 0698.76092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.