×

Lattice Boltzmann simulation of viscous fingering phenomenon of immiscible fluids displacement in a channel. (English) Zbl 1242.76267

Summary: In this paper, the viscous fingering phenomenon of two immiscible fluids in a channel is studied by applying the lattice Boltzmann method (LBM). The fundamental physical mechanisms of a finger formation or the interface evolution between immiscible fluids are described in terms of the relative importance of viscous forces, surface tension, and gravity, which are quantifiable via the dimensionless quantities, namely, capillary number, Bond number and viscosity ratio between displaced fluid and displacing fluid. In addition, the effect of wettability on flow behaviour of fluids is investigated for the cases with and without consideration of gravity, respectively. The numerical results provide a good understanding of the mechanisms of viscous fingering phenomenon from a mesoscopic point of view and confirm that the LBM can be viewed as a promising tool for investigating fluid behaviour and other immiscible displacement problems.

MSC:

76M28 Particle methods and lattice-gas methods
76D45 Capillarity (surface tension) for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Stokes, J.P.; Weitz, D.A.; Gollub, J.P., Interfacial stability of immiscible displacement in a porous medium, Phys rev lett, 57, 1718-1721, (1986)
[2] Saffman, P.G.; Taylor, G., Proc roy soc lond, ser A, 245, 312-329, (1958) · Zbl 0086.41603
[3] Park, C.W.; Gorell, S.; Homsy, G.M., J fluid mech, 141, 275-287, (1984)
[4] Moore, M.G.; Juel, A.; Burgess, J.M., Fluctuations in viscous fingering, Phys rev E, 65, 0306011-0306014, (2002)
[5] Toussaint, R.; Løvoll, G.; Méheust, Y., Influence of pore-scale disorder on viscous fingering during drainage, Europhys lett, 71, 583-589, (2005)
[6] Buffone, C.; Sefiane, K.; Christy, J.R.E., Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry, Phys fluids, 17, 052104-052118, (2005) · Zbl 1187.76074
[7] Jing-Den, C., Pore-scale difference between miscible and immiscible viscous fingering in porous media, Aiche j, 33, 307-311, (1987)
[8] Pavone, D., Observations and correlations for immiscible viscous-fingering experiments, SPE reservoir eng, 7, 187-194, (1992)
[9] Tryggvason, G.; Aref, H., Finger-interaction mechanisms in stratified Hele-Shaw flow, J fluid mech, 154, 287-301, (1985)
[10] Degregoria, A.J.; Schwartz, L.W., A boundary-integral method for two-phase displacement in Hele-Shaw cells, J fluid mech, 164, 383-400, (1986) · Zbl 0587.76174
[11] Guan, X.; Pitchumani, R., Viscous fingering in a Hele-Shaw cell with finite viscosity ratio and interfacial tension, J fluids eng, 125, 354-364, (2003)
[12] Brailovsky, I.; Babchin, A.; Frankel, M., Fingering instability in water – oil displacement, Transp porous media, 63, 363-380, (2006)
[13] Riaz, A.; Tchelepi, H.A., Numerical simulation of immiscible two-phase flow in porous media, Phys fluids, 18, 014104-014112, (2006)
[14] Riaz, A.; Tchelepi, H.A., Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation, Phys fluids, 16, 4727-4737, (2004) · Zbl 1187.76445
[15] Chen, J.-D.; Wilkinson, D., Pore-scale viscous fingering in porous media, Phys rev lett, 55, 1892-1895, (1985)
[16] Chin, J.; Boek, E.S.; Coveney, P.V., Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the shan – chen microscopic interaction model, Philos trans math phys eng sci, 360, 547-558, (2002) · Zbl 1001.76080
[17] Grosfils, P.; Boon, J.P.; Chin, J., Structural and dynamical characterization of Hele-Shaw viscous fingering, Philos trans math phys eng sci, 362, 1723-1734, (2004) · Zbl 1205.76089
[18] Kang, Q.; Zhang, D.; Chen, S., Immiscible displacement in a channel: simulations of fingering in two dimensions, Adv water resour, 27, 13-22, (2004)
[19] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Oxford University Press Oxford · Zbl 0990.76001
[20] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Annu rev fluid mech, 30, 329-364, (1998) · Zbl 1398.76180
[21] Gunstensen, A.K.; Rothman, D.H., Lattice Boltzmann model of immiscible fluids, Phys rev A, 43, 4320-4327, (1991)
[22] Grunau, D.; Chen, S.; Eggert, K., A lattice Boltzmann model for multiphase fluid flows, Phys rev A, 5, 2557-2562, (1993) · Zbl 0797.76095
[23] Latva-Kokko, M.; Rothman, D.H., Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids, Phys rev E, 71, 056702-056708, (2005)
[24] Reis, T.; Phillips, T.N., Lattice Boltzmann model for simulating immiscible two-phase flows, J phys A, 40, 4033-4053, (2007) · Zbl 1168.76360
[25] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys rev E, 47, 1815-1819, (1993)
[26] Shan, X.; Doolen, G., Multicomponent lattice-Boltzmann model with interparticle interaction, J stat phys, 81, 379-393, (1995) · Zbl 1106.82358
[27] Swift, M.R.; Orlandini, E.; Osborn, W.R., Lattice Boltzmann simulations of liquid – gas and binary fluid systems, Phys rev E, 54, 5041-5052, (1996)
[28] Swift, M.R.; Osborn, W.R.; Yeomans, J.M., Lattice Boltzmann simulation of nonideal fluids, Phys rev lett, 75, 830-833, (1995)
[29] Angelopoulos, A.D.; Paunov, V.N.; Burganos, V.N., Lattice Boltzmann simulation of nonideal vapor – liquid flow in porous media, Phys rev E, 57, 3237-3245, (1998)
[30] Inamuro, T.; Konishi, N.; Ogino, F., A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach, Comput phys commun, 129, 32-45, (2000) · Zbl 0983.76071
[31] Inamuro, T.; Ogata, T.; Tajima, S., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J comput phys, 198, 628-644, (2004) · Zbl 1116.76415
[32] Yan, Y.Y.; Zu, Y.Q., A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio, J comput phys, 227, 763-775, (2007) · Zbl 1388.76318
[33] Luo, L., Unified theory of lattice Boltzmann models for nonideal gases, Phys rev lett, 81, 1618-1621, (1998)
[34] Luo, L., Theory of the lattice Boltzmann method: lattice Boltzmann models for nonideal gases, Phys rev E, 62, 4982-4996, (2000)
[35] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh – taylor instability, J comput phys, 152, 642-663, (1999) · Zbl 0954.76076
[36] Yang, Z.L.; Dinh, T.N.; Nourgaliev, R.R., Numerical investigation of bubble growth and detachment by the lattice-Boltzmann method, Int J heat mass tranfer, 44, 195-206, (2001) · Zbl 1007.76064
[37] Yang, Z.L.; Palm, B.; Sehgal, B.R., Numerical simulation of bubbly two-phase flow in a narrow channel, Int J heat mass transfer, 45, 631-639, (2002) · Zbl 0988.76510
[38] Gupta, A.; Kumar, R., Lattice Boltzmann simulation to study multiple bubble dynamics, Int J heat mass transfer, 51, 5192-5203, (2008) · Zbl 1154.82317
[39] Fei, K.; Hong, C., All-angle removal of CO_{2} bubbles from the anode microchannels of a micro fuel cell by lattice-Boltzmann simulation, Microfluid nanofluid, 3, 77-88, (2007)
[40] Raiskinmäki, P.; Koponen, A.; Merikoski, J., Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method, Comput mater sci, 18, 7-12, (2000)
[41] Xi, H.; Duncan, C., Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow, Phys rev E, 59, 3022-3026, (1999)
[42] Hatiboglu, C.U.; Babadagli, T., Pore-scale studies of spontaneous imbibition into oil-saturated porous media, Phys rev E, 77, 066311, (2008)
[43] Harting, J.; Venturoli, M.; Coveney, P.V., Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear, Philos trans math phys eng sci, 362, 1703-1722, (2004) · Zbl 1205.76217
[44] Pan, C.; Hilpert, M.; Miller, C.T., Lattice-Boltzmann simulation of two-phase flow in porous media, Water resour res, 40, W01501, (2004)
[45] Sukop, M.C.; Or, D., Invasion percolation of single component, multiphase fluids with lattice Boltzmann models, Phys B condens matter, 338, 298-303, (2003)
[46] Sukop, M.C.; Or, D., Lattice Boltzmann method for modeling liquid – vapor interface configurations in porous media, Water resour res, 40, W01509, (2004)
[47] Chau, J.F.; Or, D., Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study, Phys rev E, 74, 056304-056311, (2006)
[48] Kang, Q.; Zhang, D.; Chen, S., Displacement of a two-dimensional immiscible droplet in a channel, Phys fluids, 14, 3203-3214, (2002) · Zbl 1185.76192
[49] Yu, Z.; Hemminger, O.; Fan, L.-S., Experiment and lattice Boltzmann simulation of two-phase gas – liquid flows in microchannels, Chem eng sci, 62, 7172-7183, (2007)
[50] Fan, L.; Fang, H.; Lin, Z., Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model, Phys rev E, 63, 051603, (2001)
[51] Fei, K.; Chen, W.; Hong, C., Microfluidic analysis of CO_{2} bubble dynamics using thermal lattice-Boltzmann method, Microfluid nanofluid, 5, 119-129, (2008)
[52] Shan, X., Simulation of rayleigh-Bénard convection using a lattice Boltzmann method, Phys rev E, 55, 2780-2788, (1997)
[53] Shan, X.; Doolen, G., Diffusion in a multicomponent lattice Boltzmann equation model, Phys rev E, 54, 3614-3620, (1996)
[54] Yuan, P.; Schaefer, L., Equations of state in a lattice Boltzmann model, Phys fluids, 18, 042101-042111, (2006) · Zbl 1185.76872
[55] Martys, N.S.; Chen, H., Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys rev E, 53, 743, (1996)
[56] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys fluids, 9, 1591-1598, (1997) · Zbl 1185.76873
[57] Dullien, F.A.L., Porous media: fluid transport and pore structure, (1992), Academic Press San Diego · Zbl 0914.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.