×

zbMATH — the first resource for mathematics

Numerical study of cavitating flows with thermodynamic effect. (English) Zbl 1242.76331
Summary: Thermodynamic effects play an important role in the cavitation dynamics of cryogenic fluids. Such flows are characterized by strong variations in fluid properties with the temperature. A compressible, multiphase, one-fluid formulation that accounts for the energy balance and variable thermodynamics properties of the fluid is described. A preconditioning method for low Mach number areas is presented. Cavitation phenomenon is modelled by two different liquid-vapour mixture equations of state (EOS). Mathematical and thermodynamic properties are studied. Numerical results are given for a Venturi geometry with freon R-114 fluid and comparisons are made with experimental data.

MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76N15 Gas dynamics (general theory)
80A17 Thermodynamics of continua
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahuja V, Hosangadi A. A numerical study of cavitation in cryogenic fluids, part I: mean flow parametric studies. In: Proceedings of sixth international symposium on cavitation CAV2006, Wageningen, The Netherlands, September 11-15, 2006.
[2] Barret, M.; Faucher, E.; Herard, J.M., Schemes to compute unsteady flashing flows, Aiaa j, 40, 5, 905-913, (2002)
[3] Downar-Zapolski, P.; Bilicki, Z.; Bolle, L.; Franco, J., The non-equilibrium relaxation model for one-dimensional flashing liquid flow, Int J multiphase flow, 22, 3, 473-483, (1996) · Zbl 1135.76405
[4] Bilicki, Z.; Kwidzinski, R.; Mohammadein, S.A., Evaluation of the relaxation time of heat and mass exchange in the liquid – vapour bubble flow, Int J heat mass transfer, 39, 4, 753-759, (1996) · Zbl 0963.76592
[5] Billet, M.L.; Holl, J.W.; Weir, D.S., Correlations of thermodynamic effects for developed cavitation, J fluids eng, 103, 12, 534-542, (1981)
[6] Choi, Y.H.; Merkle, C.L., The application of preconditioning to viscous flows, J comput phys, 105, 2, 207-223, (1993) · Zbl 0768.76032
[7] Clerc, S., Numerical simulation of the homogeneous equilibrium model for two-phase flows, J comput phys, 161, 1, 354-375, (2000) · Zbl 0965.76051
[8] Cooper, P., Analysis of single and two-phase flow in turbopump inducers, J eng power, 89, 577-588, (1967)
[9] Delannoy Y, Kueny J-L. Two phase flow approach in unsteady cavitation modelling. In: Furuya O, editor. Cavitation and multiphase flow forum, ASME-FED, vol. 98; 1990. p. 153-58.
[10] Edwards, J.R.; Franklin, R.K., Low-diffusion flux splitting methods for real fluid flows with phase transition, Aiaa j, 38, 9, 1624-1633, (2000)
[11] Fruman, D.H.; Reboud, J.-L.; Stutz, B., Estimation of thermal effects in cavitation of thermosensible liquids, Int J heat mass transfer, 42, 3195-3204, (1999) · Zbl 0976.82505
[12] Goncalvès, E.; Fortes Patella, R., Numerical simulation of cavitating flows with homogeneous models, Comput fluids, 38, 9, 1682-1696, (2009) · Zbl 1177.76429
[13] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low Mach number limit, Comput fluids, 28, 1, 63-86, (1999) · Zbl 0963.76062
[14] Harten, A.; Lax, P.D.; Lervermore, C.D.; Morokoff, W., Convex entropies and hyperbolicity for general Euler equations, SIAM J numer anal, 35, 6, 2117-2127, (1998) · Zbl 0922.35089
[15] Helluy, P.; Seguin, N., Relaxation models of phase transition flows, Math model numer anal, 40, 2, 331-352, (2006) · Zbl 1108.76078
[16] Holl, J.W.; Billet, M.L.; Weir, D.S., Thermodynamic effects on developed cavitation, J fluids eng, 97, 507-514, (1975)
[17] Hord J. Cavitation in liquid cryogens, vol. 4, combined correlations for Venturi, Hydrofoil, Ogives and Pumps. NASA CR-2448; 1974.
[18] Hosangadi, A.; Ahuja, V., Numerical study of cavitation in cryogenic fluids, J fluids eng, 127, 2, 267-281, (2005)
[19] Jameson A, Schmidt W, Turkel E. Numerical simulation of the Euler equations by finite volume method using Runge-Kutta time stepping schemes. AIAA Paper 81-1259; In: 14th fluid and plasma dynamics conference, Palo Alto, California; June 1981.
[20] Jones, W.P.; Launder, B.E., The prediction of laminarization with a two-equation model of turbulence, Int J heat mass transfer, 15, 301-314, (1972)
[21] Le Metayer, O.; Massoni, J.; Saurel, R., Elaborating equations of state of a liquid and its vapor for two-phase flow models, Int J thermal sci, 43, 265-276, (2004)
[22] Le Metayer, O.; Massoni, J.; Saurel, R., Modelling evaporation fronts with reactive Riemann solvers, J comput phys, 205, 2, 567-610, (2005) · Zbl 1088.76051
[23] Luo, H.; Baum, J.D.; Lohner, R., A fast, matrix-free implicit method for compressible flows on unstructured grids, J comput phys, 146, 2, 664-690, (1998) · Zbl 0931.76045
[24] Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications, Aiaa j, 32, 8, 1598-1605, (1994)
[25] Merci, B.; Steelant, J.; Vierendeels, J.; Riemslagh, K.; Dick, E., Computational treatment of source terms in two-equation turbulence models, Aiaa j, 38, 11, 2085-2093, (2000)
[26] Merle L. Etude expérimentale et modèle physique d’un écoulement cavitant avec effet thermodynamique. Ph.D. Thesis. Grenoble Polytechnic Institute; 1994.
[27] Moore RD, Ruggeri RS. Prediction of thermodynamic effects on developed cavitation based on liquid hydrogen and freon 114 data in scaled venturis. NASA TN D-4899; November 1968.
[28] Perrier, V., The Chapman-jouguet closure for the Riemann problem with vaporization, SIAM J appl math, 68, 5, 1333-1359, (2008) · Zbl 1225.76256
[29] Rapposelli E, d’Agostino L. A barotropic cavitation model with thermodynamic effects. In: Proceedings of fifth international symposium on cavitation CAV2003, Osaka, Japan, November 1-4, 2003.
[30] Roe, P.L., Approximate Riemann solvers, parameters vectors, and difference schemes, J comput phys, 43, 357-372, (1981) · Zbl 0474.65066
[31] Rolland J, Fortes Patella R, Goncalves E, Boitel G, Barre S. Experiments and modelling of cavitating flows in Venturi, part I: stable cavitation. In: Proceedings of sixth international symposium on cavitation CAV2006, Wageningen, The Netherlands, September 11-15, 2006. · Zbl 1167.76300
[32] Rolland J. Modélisation des écoulements cavitants dans les inducteurs de turbopompes: prise en compte des effets thermodynamiques. Ph.D. Thesis. Grenoble Polytechnic Institute; 2008.
[33] Saurel, R.; Le Metayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J fluid mech, 431, 239-271, (2001) · Zbl 1039.76069
[34] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J fluid mech, 607, 313-350, (2008) · Zbl 1147.76060
[35] Spalart, P.R.; Allmaras, S.R., A one-equation turbulence model for aerodynamic flows, La rech aero, 1, 5-21, (1994)
[36] Stahl, H.A.; Stepanoff, A.J.; Phillipsburg, N.J., Thermodynamic aspects of cavitation in centrifugal pumps, ASME J basic eng, 78, 1691-1693, (1956)
[37] Stutz B. Analyse de la structure diphasique et instationnaire de poches de cavitation. Ph.D. Thesis. Grenoble Polytechnic Institute; 1996.
[38] Tatsumi, S.; Martinelli, L.; Jameson, A., Flux-limited schemes for the compressible navier – stokes equations, Aiaa j, 33, 2, 252-261, (1995) · Zbl 0824.76058
[39] Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations, J comput phys, 172, 2, 277-298, (1987) · Zbl 0633.76069
[40] Utturkar, Y.; Wu, J.; Wang, G.; Shyy, W., Recent progress in modelling of cryogenic cavitation for liquid rocket propulsion, Prog aerosp sci, 41, 558-608, (2005)
[41] Wallis, G., One-dimensional two-phase flow, (1967), McGraw-Hill New York
[42] Zhang, X.B.; Qiu, L.M.; Gao, Y.; Zhang, X.J., Computational fluid dynamic study on cavitation in liquid nitrogen, Cryogenics, 48, 9-10, 432-438, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.