zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bianchi types II, VIII, and IX string cosmological models with bulk viscosity in a theory of gravitation. (English) Zbl 1242.83098
Summary: We have obtained and presented spatially homogeneous Bianchi types II, VIII, and IX string cosmological models with bulk viscosity in a theory of gravitation proposed by {\it D. K. Sen} [Z. Phys. 149, 311--323 (1957; Zbl 0078.19501)] based on Lyra’s geometry [{\it G. Lyra}, Math. Z. 54, 52--64 (1951; Zbl 0042.15902)]. It is observed that only vacuum cosmological model exists in case of Bianchi type IX universe. Some physical and geometrical properties of the models are also discussed.

MSC:
83D05Relativistic gravitational theories other than Einstein’s
83E30String and superstring theories
83F05Relativistic cosmology
83C15Closed form solutions of equations in general relativity
WorldCat.org
Full Text: DOI
References:
[1] G. Lyra, “Über eine modifikation der riemannschen geometrie,” Mathematische Zeitschrift, vol. 54, pp. 52-64, 1951. · Zbl 0042.15902 · doi:10.1007/BF01175135 · eudml:169209
[2] H. Weyl, “Gravitation und Elektrizität,” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, vol. 465, 1918. · Zbl 46.1300.01
[3] D. K. Sen, “A static cosmological model,” Zeitschrift für Physik C, vol. 149, pp. 311-323, 1957. · Zbl 0078.19501
[4] D. K. Sen and K. A. Dunn, “A scalar-tensor theory of gravitation in a modified Riemannian manifold,” Journal of Mathematical Physics, vol. 12, no. 4, pp. 578-586, 1971. · Zbl 0211.24804 · doi:10.1063/1.1665623
[5] W. D. Halford, “Scalar-tensor theory of gravitation in a Lyra manifold,” Journal of Mathematical Physics, vol. 13, no. 11, pp. 1699-1703, 1972.
[6] P. S. Letelier, “String cosmologies,” Physical Review D, vol. 28, no. 10, pp. 2414-2419, 1983. · doi:10.1103/PhysRevD.28.2414
[7] K. D. Krori, T. Chaudhury, C. R. Mahanta, and A. Mazumdar, “Some exact solutions in string cosmology,” General Relativity and Gravitation, vol. 22, no. 2, pp. 123-130, 1990. · doi:10.1007/BF00756203
[8] P. Mahanta and A. Mukherjee, “String models in Lyra geometry,” Indian Journal of Pure and Applied Mathematics, vol. 32, no. 2, pp. 199-204, 2001. · Zbl 0980.83053
[9] R. Bhattacharjee and K. K. Baruah, “String cosmologies with a scalar field,” Indian Journal of Pure and Applied Mathematics, vol. 32, no. 1, pp. 47-53, 2001. · Zbl 0980.83052
[10] D. R. K. Reddy and M. V. S. Rao, “A xially symmetric cosmic strings and domain walls in Lyra geometry,” Astrophysics and Space Science, vol. 302, no. 1-4, pp. 157-160, 2006. · doi:10.1007/s10509-005-9022-7
[11] G. Mohanty and K. L. Mahanta, “Five-dimensional axially symmetric string cosmological model in Lyra manifold,” Astrophysics and Space Science, vol. 312, no. 3-4, pp. 301-304, 2007. · doi:10.1007/s10509-007-9691-5
[12] V. U. M. Rao and T. Vinutha, “Axially symmetric cosmological models in a scalar tensor theory based on Lyra manifold,” Astrophysics and Space Science, vol. 319, no. 2-4, pp. 161-167, 2009. · doi:10.1007/s10509-008-9971-8
[13] J. D. Barrow, “The deflationary universe: an instability of the de Sitter universe,” Physics Letters B, vol. 180, no. 4, pp. 335-339, 1986. · doi:10.1016/0370-2693(86)91198-6
[14] T. Padmanabhan and S. M. Chitre, “Viscous universes,” Physics Letters A, vol. 120, no. 9, pp. 433-436, 1987.
[15] D. Pavón, J. Bafaluy, and D. Jou, “Causal Friedmann-Robertson-Walker cosmology,” Classical and Quantum Gravity, vol. 8, no. 2, pp. 347-360, 1991.
[16] R. Martens, “Dissipative cosmology,” Classical and Quantum Gravity, vol. 12, no. 6, article 1455, 1995. · doi:10.1088/0264-9381/12/6/011
[17] J. A. S Lima, A. S. M Germano, and L. R. W Abrama, “FRW-type cosmologies with adiabatic matter creation,” Physical Review D, vol. 53, pp. 4287-4297, 1996. · doi:10.1103/PhysRevD.53.4287
[18] S. R. Roy and O. P. Tiwari, “Some inhomogeneous viscous fluid cosmological models of plane symmetry,” Indian Journal of Pure and Applied Mathematics, vol. 14, no. 2, pp. 233-243, 1983. · Zbl 0543.76179
[19] G. Mohanty and R. R. Pattanaik, “Anisotropic, spatially homogeneous, bulk viscous cosmological model,” International Journal of Theoretical Physics, vol. 30, no. 2, pp. 239-244, 1991. · doi:10.1007/BF00670717
[20] G. Mohanty and B. D. Pradhan, “Cosmological mesonic viscous fluid model,” International Journal of Theoretical Physics, vol. 31, no. 1, pp. 151-160, 1992. · Zbl 0743.53046 · doi:10.1007/BF00674348
[21] J. K. Singh and R. Shri, “Plane-symmetric mesonic viscous fluid cosmological model,” Astrophysics and Space Science, vol. 236, no. 2, pp. 277-284, 1996. · Zbl 0890.76099 · doi:10.1007/BF00645149
[22] J. Sing, “Some viscous fluid cosmological models,” Il Nuovo Cimento B, vol. 120, no. 12, pp. 1251-1259, 2005. · doi:10.1393/ncb/i2005-10070-y
[23] X.-X. Wang, “Locally rotationally symmetric bianchi type-I string cosmological model with bulk viscosity,” Chinese Physics Letters, vol. 21, no. 7, pp. 1205-1207, 2004. · doi:10.1088/0256-307X/21/7/006
[24] X.-X. Wang, “Bianchi type-III string cosmological model with bulk viscosity in general relativity,” Chinese Physics Letters, vol. 22, no. 1, pp. 29-32, 2005. · doi:10.1088/0256-307X/22/1/009
[25] X.-X. Wang, “Bianchi type-III string cosmological model with bulk viscosity and magnetic field,” Chinese Physics Letters, vol. 23, no. 7, pp. 1702-1704, 2006. · doi:10.1088/0256-307X/23/7/013
[26] R. Bali and S. Dave, “Bianchi type-III string cosmological model with bulk viscous fluid in general relativity,” Astrophysics and Space Science, vol. 282, no. 2, pp. 461-467, 2002. · doi:10.1023/A:1020834610024
[27] R. Bali and A. Pradhan, “Bianchi type-III string cosmological models with time dependent bulk viscosity,” Chinese Physics Letters, vol. 24, no. 2, article 079, pp. 585-588, 2007. · doi:10.1088/0256-307X/24/2/079
[28] S. K. Tripathy, S. K. Nayak, S. K. Sahu, and T. R. Routray, “Bulk viscous string cosmological models with electromagnetic field,” Astrophysics and Space Science, vol. 321, no. 3-4, pp. 247-252, 2009. · doi:10.1007/s10509-009-0033-7
[29] S. K. Tripathy, D. Behera, and T. R. Routray, “Anisotropic universe with cosmic strings and bulk viscosity,” Astrophysics and Space Science, vol. 325, no. 1, pp. 93-97, 2010. · doi:10.1007/s10509-009-0169-5
[30] V. U. M. Rao, G. Sree Devi Kumari, and K. V. S. Sireesha, “Anisotropic universe with cosmic strings and bulk viscosity in a scalar-tensor theory of gravitation,” Astrophysics and Space Science, vol. 335, no. 2, pp. 635-638, 2011. · Zbl 1254.83038 · doi:10.1007/s10509-011-0776-9
[31] R. Bali and S. Dave, “Bianchi type IX string cosmological model in general relativity,” Pramana: Journal of Physics, vol. 56, no. 4, pp. 513-518, 2001.
[32] R. Bali and M. K. Yadav, “Bianchi type-IX viscous fluid cosmological model in general relativity,” Pramana: Journal of Physics, vol. 64, no. 2, pp. 187-196, 2005.
[33] D. R. K. Reddy, B. M. Patrudu, and R. Venkateswarlu, “Exact Bianchi type II, VIII and IX cosmological models in scale-covariant theory of gravitation,” Astrophysics and Space Science, vol. 204, no. 1, pp. 155-160, 1993. · Zbl 0781.76102 · doi:10.1007/BF00658101
[34] K. Shanthi and V. U. M. Rao, “Bianchi type-II and III models in self-creation cosmology,” Astrophysics and Space Science, vol. 179, no. 1, pp. 147-153, 1991. · Zbl 0726.76122 · doi:10.1007/BF00642359
[35] V. U. M. Rao and Y. V. S. S. Sanyasi Raju, “Exact Bianchi-type VIII and IX models in the presence of zero-mass scalar fields,” Astrophysics and Space Science, vol. 187, no. 1, pp. 113-117, 1992. · Zbl 0741.76102 · doi:10.1007/BF00642691
[36] Y. V. S. S. Sanyasi Raju and V. U. M. Rao, “Exact Bianchi-type VIII and IX models in the presence of the self-creation theory of cosmology,” Astrophysics and Space Science, vol. 189, no. 1, pp. 39-43, 1992. · Zbl 0743.76105 · doi:10.1007/BF00642950
[37] F. Rahaman, S. Chakraborty, N. Begum, M. Hossain, and M. Kalam, “Bianchi-IX string cosmological model in Lyra geometry,” Pramana: Journal of Physics, vol. 60, no. 6, pp. 1153-1159, 2003.
[38] V. U. M. Rao, M. Vijaya Santhi, and T. Vinutha, “Exact Bianchi type II, VIII and IX string cosmological models in Saez-Ballester theory of gravitation,” Astrophysics and Space Science, vol. 314, no. 1-3, pp. 73-77, 2008. · doi:10.1007/s10509-008-9739-1
[39] V. U. M. Rao, M. Vijaya Santhi, and T. Vinutha, “Exact Bianchi type-II, VIII and IX perfect fluid cosmological models in Saez-Ballester theory of gravitation,” Astrophysics and Space Science, vol. 317, no. 1-2, pp. 27-30, 2008. · doi:10.1007/s10509-008-9849-9
[40] V. U. M. Rao, M. Vijaya Santhi, and T. Vinutha, “Exact Bianchi type II, VIII and IX string cosmological models in General Relativity and self-creation theory of gravitation,” Astrophysics and Space Science, vol. 317, no. 1-2, pp. 83-88, 2008. · doi:10.1007/s10509-008-9859-7