zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sufficient descent directions in unconstrained optimization. (English) Zbl 1242.90223
Summary: Descent property is very important for an iterative method to be globally convergent. In this paper, we propose a way to construct sufficient descent directions for unconstrained optimization. We then apply the technique to derive a PSB (Powell-Symmetric-Broyden) based method. The PSB based method locally reduces to the standard PSB method with unit steplength. Under appropriate conditions, we show that the PSB based method with Armijo line search or Wolfe line search is globally and superlinearly convergent for uniformly convex problems. We also do some numerical experiments. The results show that the PSB based method is competitive with the standard BFGS method.

90C30Nonlinear programming
Full Text: DOI
[1] Byrd, R.H., Nocedal, J., Yuan, Y.X.: Global convergence of a class of variable metric algorithms. SIAM J. Numer. Anal. 24, 1171--1190 (1987) · Zbl 0657.65083 · doi:10.1137/0724077
[2] Byrd, R.H., Khalfan, H.F., Schnabel, R.B.: Analysis of a symmetric rank-one trust region method. SIAM J. Optim. 6, 1025--1039 (1996) · Zbl 0923.65035 · doi:10.1137/S1052623493252985
[3] Dennis, J.E. Jr., Moré, J.J.: Quasi-Newton methods, motivation and theory. SIAM Rev. 19, 46--89 (1977) · Zbl 0356.65041 · doi:10.1137/1019005
[4] Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983) · Zbl 0579.65058
[5] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201--213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[6] Li, D.H.: Global convergence of nonsingular Broyden’s method for solving unconstrained optimizations. Math. Numer. Sinica 17, 321--330 (1995) · Zbl 0885.65062
[7] Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 181--201 (2000) · Zbl 0960.65076 · doi:10.1080/10556780008805782
[8] Moré, J.J., Trangenstein, J.A.: On the global convergence of Broyden’s method. Math. Comput. 30, 523--540 (1976) · Zbl 0353.65036 · doi:10.2307/2005323
[9] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) · Zbl 0930.65067
[10] Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 2, pp. 1--27. Academic Press, New York (1975)
[11] Shi, Z.J.: Convergence of quasi-Newton method with new inexact line search. J. Math. Anal. Appl. 315, 120--131 (2006) · Zbl 1093.65063 · doi:10.1016/j.jmaa.2005.05.077
[12] Shi, Z.J., Shen, J.: Convergence of nonmonotone line search method. J. Comput. Appl. Math. 193, 397--412 (2006) · Zbl 1136.90477 · doi:10.1016/j.cam.2005.06.033
[13] Zhang, L., Zhou, W.J., Li, D.H.: Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search. Numer. Math. 104, 561--572 (2006) · Zbl 1103.65074 · doi:10.1007/s00211-006-0028-z