zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics and adaptive control of a duopoly advertising model based on heterogeneous expectations. (English) Zbl 1242.91080
Summary: This paper discusses a duopoly advertising model based on heterogeneous expectations. Firstly, it points out the unstable region of Nash equilibrium and its influencing factors by analyzing the stability of the improved model. Secondly, it applies the adaptive control method to the chaos of the duopoly advertising model. The control aims are to bring this system into the instability equilibrium point by using minor disturbance of the control parameter. The result of theoretical study and numerical simulation illuminates that the method could successfully lead the chaos track to low cycle track. Moreover, scope of the convergent condition and control intensity are given.

91B26Market models (auctions, bargaining, bidding, selling, etc.)
91B62Growth models in economics
93C40Adaptive control systems
37N40Dynamical systems in optimization and economics
Full Text: DOI
[1] Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. Physica A 320, 512--524 (2003) · Zbl 1010.91006 · doi:10.1016/S0378-4371(02)01648-5
[2] Agiza, H.N., Elsadany, A.A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 149, 843--860 (2004) · Zbl 1064.91027 · doi:10.1016/S0096-3003(03)00190-5
[3] Agiza, H.N., Hegazi, A.S., Elsadany, A.A.: The dynamics of Bowley’s model with bounded rationality. Chaos Solitons Fractals 12, 1705--1717 (2001) · Zbl 1036.91004 · doi:10.1016/S0960-0779(00)00021-7
[4] Bischi, G.I., Kopel, M.: Equilibrium selection in a nonlinear duopoly game with adaptive expectations. J. Econ. Behav. Organ. 46, 73--100 (2001) · doi:10.1016/S0167-2681(01)00188-3
[5] Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196--1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[6] Pyragas, K., Pyragas, V., Kiss, I.I., Hudson, J.L.: Adaptive control of unknown unstable steady states of dynamics systems. Phys. Rev. E 70, 026215 (2004)
[7] Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421--428 (1992) · doi:10.1016/0375-9601(92)90745-8
[8] Agiza, H.N., Hegazi, A.Z., Elsadany, A.A.: Complex dynamics and synchronization of a duopoly game with bounded rationality. Math. Comput. Simul. 58, 133--146 (2002) · Zbl 1002.91010 · doi:10.1016/S0378-4754(01)00347-0
[9] Bischi, G.I., Gardini, L.S.: Synchronization, intermittency and critical curves in a duopoly game. Math. Comput. Simul. 44, 559--585 (1998) · Zbl 1017.91500 · doi:10.1016/S0378-4754(97)00100-6
[10] Yao, H.X., Wu, C.Y., Jiang, D.P.: Chaos control in an investment model with straight-line stabilization method. Nonlinear Anal., Real World Appl. 9, 651--662 (2008) · Zbl 1139.93345 · doi:10.1016/j.nonrwa.2006.12.014
[11] Du, J.G., Huang, T.W., Sheng, Z.H.: Analysis of decision-making in economic chaos control. Nonlinear Anal., Real World Appl. 4, 2493--2501 (2009) · Zbl 1163.91331 · doi:10.1016/j.nonrwa.2008.05.007
[12] Zhu, J.D., Tian, Y.P.: Nonlinear recursive delayed feedback control for chaotic discrete-time systems. Phys. Lett. A 4(21), 295--300 (2003) · Zbl 1034.93025 · doi:10.1016/S0375-9601(03)00369-4
[13] Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly model. Chaos Solitons Fractals 12, 2031--2048 (1996) · Zbl 1080.91541 · doi:10.1016/S0960-0779(96)00070-7