Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system. (English) Zbl 1242.93037

Summary: In this paper, an observer-based passive Fault-Tolerant Control (FTC) scheme is proposed for a Near-Space Hypersonic Vehicle (NSHV) dynamical system with both parameter uncertainty and actuator faults. The parameter uncertainty is assumed to be norm-bounded, and the possible fault of each actuator is described by a variable varying within a given interval. Our aim is to design an observer-based FTC law such that, for the admissible parameter uncertainty and possible actuator faults, the resulting closed-loop system is asymptotically stable with a given disturbance attenuation level \(\gamma \). The unknown gain matrices are characterized in terms of the solutions to some Linear Matrix Inequalities (LMIs) which can be readily solved using standard software packages. The FTC scheme presented in this study is finally demonstrated via simulation on a linearized NSHV dynamical system to illustrate the effectiveness.


93B35 Sensitivity (robustness)
93C41 Control/observation systems with incomplete information
Full Text: DOI


[1] H. Buschek, A.J. Calise, Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. AIAA J. Guid. Control Dyn. 20(1), 42–48 (1997) · Zbl 0925.93692 · doi:10.2514/2.4031
[2] M. Corless, J. Tu, State and input estimation for a class of uncertain systems. Automatica 34(6), 757–764 (1998) · Zbl 0932.93008 · doi:10.1016/S0005-1098(98)00013-2
[3] M.L. Corradini, G. Orlando, Actuator failure identification and compensation through sliding modes. IEEE Trans. Control Syst. Technol. 15(1), 184–190 (2007) · doi:10.1109/TCST.2006.883211
[4] C. Dong, Y. Hou, Y. Zhang, Q. Wang, Model reference adaptive switching control of a linearized hypersonic flight vehicle model with actuator saturation. Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng. 224(3), 289–303 (2010) · doi:10.1243/09596518JSCE829
[5] B. Fidan, M. Mirmirani, P.A. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. AIAA Guidance, Navigation and Control Conference, Paper Number: AIAA 2003–7081
[6] Z.F. Gao, B. Jiang, P. Shi, Y.F. Xu, Fault accommodation for near space vehicle attitude dynamics via T–S fuzzy models. Int. J. Innov. Comput., Inf. Control 6(11), 4843–4856 (2010)
[7] Y.Y. Guo, B. Jiang, P. Shi, Delay-dependent adaptive reconfiguration control in the presence of input saturation and actuator faults. Int. J. Innov. Comput., Inf. Control 6(4), 1873–1882 (2010)
[8] D. Huang, S.K. Nguang, Robust fault estimator design for uncertain networked control systems with random time delays: An ILMI approach. Inf. Sci. 180(3), 465–480 (2010) · Zbl 1187.93122 · doi:10.1016/j.ins.2009.10.002
[9] B. Jiang, Z.F. Gao, P. Shi, Y.F. Xu, Adaptive fault-tolerant tracking control of near space vehicle using Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2010) · doi:10.1109/TFUZZ.2010.2058808
[10] J. Klamka, Controllability of Dynamical Systems (Kluwer Academic, Dordrecht, 1991) · Zbl 0732.93008
[11] B. Liang, G.R. Duan, Observer-based $\(\backslash\)mathcal{H}_{\(\backslash\)infty}$ fault-tolerant control against actuator failures for descriptor systems, in Proceedings of the Fifth World Congress on Intelligent Control and Automation (2004), pp. 1007–1011
[12] Y.W. Liang, D.C. Liaw, T.C. Lee, Reliable control of nonlinear systems. IEEE Trans. Autom. Control 45(4), 706–710 (2000) · Zbl 0969.49018 · doi:10.1109/9.847106
[13] Y.W. Liang, S.D. Xu, C.L. Tsai, Study of VSC reliable designs with application to spacecraft attitude stabilization. IEEE Trans. Control Syst. Technol. 15(2), 332–338 (2007) · doi:10.1109/TCST.2006.883186
[14] F. Liao, J.L. Wang, G.H. Yang, Reliable robust flight tracking control: An LMI approach. IEEE Trans. Control Syst. Technol. 10(1), 76–89 (2002) · doi:10.1109/87.974340
[15] C.H. Lien, K.W. Yu, LMI optimization approach on robustness and $\(\backslash\)mathcal{H}_{\(\backslash\)infty}$ control analysis for observer-based control of uncertain systems. Chaos Solitons Fractals 36(3), 617–627 (2008) · Zbl 1141.93328 · doi:10.1016/j.chaos.2006.06.076
[16] C.H. Lien, K.W. Yu, Y.F. Lin, Y.J. Chung, L.Y. Chung, Robust reliable $\(\backslash\)mathcal{H}_{\(\backslash\)infty}$ control for uncertain nonlinear systems via LMI approach. Appl. Math. Comput. 198(1), 453–462 (2008) · Zbl 1141.93322 · doi:10.1016/j.amc.2007.08.085
[17] L.Y. Meng, B. Jiang, Robust active fault-tolerant control for a class of uncertain nonlinear systems with actuator faults. Int. J. Innov. Comput., Inf. Control 6(6), 2637–2644 (2010)
[18] P. Shi, E.K. Boukas, S.K. Nguang, X.P. Guo, Robust disturbance attenuation for discrete-time active fault tolerant control systems with uncertainties. Optim. Control Appl. Methods 24(2), 85–101 (2003) · Zbl 1073.93568 · doi:10.1002/oca.722
[19] R.J. Veillette, J.V. Medanic, W.R. Perkins, Design of reliable control systems. IEEE Trans. Autom. Control 37(3), 290–304 (1992) · Zbl 0745.93025 · doi:10.1109/9.119629
[20] M. Vidyasagar, N. Viswanadham, Reliable stabilization using a multi-controller configuration. Automatica 21(5), 599–602 (1985) · doi:10.1016/0005-1098(85)90008-1
[21] Q. Wang, R.F. Stengel, Robust nonlinear control of a hypersonic aircraft. AIAA J. Guid. Control Dyn. 23(4), 577–585 (2000) · doi:10.2514/2.4580
[22] Z.D. Wang, G.L. Wei, G. Feng, Reliable $\(\backslash\)mathcal{H}_{\(\backslash\)infty}$ control for discrete-time piecewise linear systems with infinite distributed delays. Automatica 45(12), 2991–2994 (2009) · Zbl 1192.93030 · doi:10.1016/j.automatica.2009.09.012
[23] H.J. Xu, M.D. Mirmirani, P.A. Ioannou, Adaptive sliding mode control design for a hypersonic flight vehicle. AIAA J. Guid. Control Dyn. 27(5), 829–838 (2004) · doi:10.2514/1.12596
[24] Y.L. Xue, C.S. Jiang, Trajectory linearization control of an aerospace vehicle based on RBF neural network. J. Syst. Eng. Electron. 19(4), 799–805 (2008) · Zbl 1228.93031 · doi:10.1016/S1004-4132(08)60156-5
[25] G.H. Yang, J.L. Wang, Y.C. Soh, Reliable $\(\backslash\)mathcal{H}_{\(\backslash\)infty}$ controller design for linear systems. Automatica 37(5), 717–725 (2001) · Zbl 0990.93029
[26] Y.W. Zhang, T. Hesketh, H. Wang, J.C. Liu, D. Xiao, Actuator fault compensation for nonlinear systems using adaptive tracking control. Circuits Syst. Signal Process. 29(3), 419–430 (2010) · Zbl 1191.94171 · doi:10.1007/s00034-010-9152-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.