zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Similarity in soft set theory. (English) Zbl 1243.03071
Summary: We introduce and study the concept of similarity between soft sets, which is an extension of equality for soft set theory. We also introduce the concepts of conjunction parameter $(\alpha \wedge \beta)$ and disjunction parameter $(\alpha \vee \beta)$ of an ordered pair of parameters $\langle \alpha,\beta \rangle$ for soft set theory, and we investigate modified operations of soft set theory in terms of ordered parameters.

03E72Fuzzy set theory
Full Text: DOI
[1] Zadeh, L. A.: Fuzzy sets, Inf. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2] Pawlak, Z.: Rough sets, Int. J. Inf. comput. Sci. 11, 341-356 (1982) · Zbl 0501.68053
[3] Gau, W. L.; Buehrer, D. J.: Vague sets, IEEE trans. Syst. man cybern. 23, No. 2, 610-614 (1993) · Zbl 0782.04008
[4] Molodtsov, D.: Soft set theory-first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[5] Maji, P. K.; Biswas, R.; Roy, A. R.: On soft set theory, Comput. math. Appl. 45, 555-562 (2003) · Zbl 1032.03525
[6] Aktas, H.; Cagman, N.: Soft sets and soft groups, Inform. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[7] Ali, M. I.; Feng, F.; Liu, X.; Min, W. K.; Shabir, M.: On some new operations in soft set theory, Comput. math. Appl. 57, 1547-1553 (2009) · Zbl 1186.03068 · doi:10.1016/j.camwa.2008.11.009
[8] Yang, X.; Lin, T. Y.; Yang, J.; Dongjun, Y. L. A.: Combination of interval-valued fuzzy set and soft set, Comput. math. Appl. 58, 521-527 (2009) · Zbl 1189.03064 · doi:10.1016/j.camwa.2009.04.019
[9] Ali, M. I.: A note on soft sets, rough sets and fuzzy sets, Appl. soft comput. 11, 3329-3332 (2011)
[10] Ali, M. I.; Shabir, M.; Naz, M.: Algebraic structures of soft sets associated with new operations, Comput. math. Appl. 61, 2647-2654 (2011) · Zbl 1221.03056 · doi:10.1016/j.camwa.2011.03.011
[11] Cagman, N.; Enginoglu, S.: Soft set theory and uni-int decision making, European J. Oper. res. 207, 848-855 (2010) · Zbl 1205.91049 · doi:10.1016/j.ejor.2010.05.004
[12] Feng, F.; Li, C.; Davvaz, B.; Ali, M. I.: Soft sets combined with fuzzy sets and rough sets a tentative approach, Soft comput. 14, No. 6, 899-911 (2010) · Zbl 1201.03046 · doi:10.1007/s00500-009-0465-6