zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent stability of neutral systems with time-varying delays using delay-decomposition approach. (English) Zbl 1243.34105
Summary: This paper is concerned with the problem of asymptotic stability of neutral systems. A new delay-dependent stability condition is derived in terms of linear matrix inequality to ensure a large upper bound of the time-delay by non-uniformly dividing the delay interval into multiple segments. A new Lyapunov-Krasovskii functional is constructed with different weighting matrices corresponding to different segments in the Lyapunov-Krasovskii functional, where both constant time delays and time-varying delays have been taken into account. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.

34K20Stability theory of functional-differential equations
34K40Neutral functional-differential equations
Full Text: DOI
[1] Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional differential equations, (1993) · Zbl 0787.34002
[2] Kolmanovskii, V. B.: Stability of functional differential equations, (1986)
[3] Yue, D.; Won, S.; Kwon, O.: Delay dependent stability of neutral system with time delay: an lmi approach, Control theory appl. IEE proc. 150, 23-27 (2003)
[4] Cao, D.; He, P.: Stability criteria of linear neutral system with a single delay, Appl. math. Comput. 148, 135-143 (2004) · Zbl 1044.34029 · doi:10.1016/S0096-3003(02)00833-0
[5] Sun, Y.; Wang, L.: Note on asymptotic stability of a class of neutral differential equations, Appl. math. Lett. 19, 949-953 (2006) · Zbl 1122.34340 · doi:10.1016/j.aml.2005.10.015
[6] Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[7] Brayton, R. K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type, Quarter. appl. Math. 24, 215-224 (1996) · Zbl 0143.30701
[8] Niculescu, S. I.: Delay effects on stability: A robust control approach, (2001) · Zbl 0997.93001
[9] Han, Q. L.: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays, IMA J. Math. control inform. 20, 371-386 (2003) · Zbl 1046.93039 · doi:10.1093/imamci/20.4.371
[10] Han, Q. L.: Robust stability of uncertain delay-differential systems of neutral type, Automatica 38, 719-723 (2000) · Zbl 1020.93016 · doi:10.1016/S0005-1098(01)00250-3
[11] Hu, G. D.: Some simple stability criteria of neutral delay -- differential systems, Appl. math. Comput. 80, 257-271 (1996) · Zbl 0878.34063
[12] Mahmoud, M. S.: Robust H$\infty $ control of linear neutral systems, Automatica 36, 757-764 (2000) · Zbl 0988.93024 · doi:10.1016/S0005-1098(99)00159-4
[13] Chen, J. D.; Lien, C. H.; Fan, K. K.; Cheng, J. S.: Delay-dependent stability criterion for neutral time-delay systems, Electron. lett. 22, 1897-1898 (2000)
[14] Xu, S.; Lam, J.; Zou, Y.: Further results on delay-dependent robust stability conditions of uncertain neutral systems, Int. J. Robust nonlinear control 15, 233-246 (2005) · Zbl 1078.93055 · doi:10.1002/rnc.983
[15] Park, J. H.: Novel robust stability criterion for a class of neutral systems with mixed delays and nonlinear perturbations, Appl. math. Comput. 161, 413-421 (2005) · Zbl 1065.34076 · doi:10.1016/j.amc.2003.12.036
[16] Zhang, J. H.; Peng, S.; Qiu, J. Q.: Robust stability criteria for uncertain neutral system with time delay and nonlinear uncertainties, Chaos solitons fract. 38, 160-167 (2008) · Zbl 1142.93402 · doi:10.1016/j.chaos.2006.10.068
[17] Sun, J.; Liu, G. P.; Chen, J.: Delay-dependent stability and stabilization of neutral time-delay systems, Int J. Robust nonlinear control 19, 1364-1375 (2009) · Zbl 1169.93399 · doi:10.1002/rnc.1384
[18] Fridman, E.; Shaked, U.: Delay-dependent stability and H$\infty $ control: constant and time-varying delays, Int. J. Control 76, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[19] Wu, M.; He, Y.; She, J. H.: New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE trans automat. Control 49, 2266-2271 (2004)
[20] He, Y.; Wang, Q. G.; Lin, C.; Wu, M.: Augumented Lyapunov functional and delay-dependent stability criteria for neutral systems, Int. J. Robust nonlinear control 15, 923-933 (2005) · Zbl 1124.34049 · doi:10.1002/rnc.1039
[21] Parlakci, M. N. A.: Robust stability of uncertain neutral systems: a novel augmented Lyapunov functional approach, IET control theory appl. 1, 802-809 (2007)
[22] Zhao, Z.; Wang, W.; Yang, B.: Delay and its time-derivative dependent robust stability of neutral control system, Appl. math. Comput. 187, 1326-1332 (2007) · Zbl 1114.93076 · doi:10.1016/j.amc.2006.09.042
[23] Kwon, O. M.; Park, J. H.; Lee, S. M.: On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Appl. math. Comput. 197, 864-873 (2008) · Zbl 1144.34052 · doi:10.1016/j.amc.2007.08.048
[24] Nian, X.; Pang, H.; Gui, W.; Wang, H.: New stability analysis for linear neutral system via state matrix decomposition, Appl. math. Comput. 215, 1830-1837 (2009) · Zbl 1201.34119 · doi:10.1016/j.amc.2009.07.037
[25] Parlakci, M. N. A.: Extensively augmented Lyapunov functional approach for the stability of neutral time-delay systems, IET control theory appl. 2, 431-436 (2008)
[26] Yue, D.; Han, Q. L.: A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model, IEEE trans. Circ. syst. II-express briefs 51, 685-689 (2004)
[27] Kwon, O. M.; Park, Ju H.: Augmented Lyapunov functional approach to stability of uncertain neutral systems with time-varying delays, Appl. math. Comput. 207, 202-212 (2009) · Zbl 1178.34091 · doi:10.1016/j.amc.2008.10.018
[28] Park, M.; Kwon, O. M.; Park, J. H.; Lee, S.: Delay-dependent stability criteria for linear time-delay system of neutral type, World acad. Sci. eng. Tech. 70, 1014-1018 (2010)
[29] Kwon, O. M.; Lee, S. M.; Park, J. H.: Liner matrix inequality approach to new delay-dependent stability criteria for uncertain dynamic systems with time-varying delays, J. optim. Theory appl. 149, 630-646 (2011) · Zbl 1221.93211 · doi:10.1007/s10957-011-9795-5
[30] Fang, Q.; Baotong, C.; Yan, J.: A delay-dividing approach to stability of neutral system with mixed delays and nonlinear perturbations, Appl. math. Model. 34, 3701-3707 (2010) · Zbl 1201.93098 · doi:10.1016/j.apm.2010.03.013
[31] Park, J. H.: Design of robust H$\infty $ filter for a class of neutral systems: LMI optimization approach, Math. comput. Simul. 70, 99-109 (2005) · Zbl 1093.93010 · doi:10.1016/j.matcom.2005.05.002
[32] Park, J. H.: Convex optimization approach to dynamic output feedback control for delay differential systems of neutral type, J. optim. Theory appl. 127, 411-423 (2005) · Zbl 1113.93048 · doi:10.1007/s10957-005-6552-7
[33] Park, J. H.: Design of a dynamic output feedback controller for a class of neutral systems with discrete and distributed delays, IEE proc. Control theory appl. 151, 610-614 (2004)
[34] Zhang, X. M.; Han, Q. L.: New Lyapunov -- Krasovskiĭ functionals for global asymptotic stability of delayed neural networks, IEEE trans. Neural netw. 20, 533-539 (2009)