zbMATH — the first resource for mathematics

On some systems of difference equations. (English) Zbl 1243.39009
The authors consider the following three systems of nonlinear difference equations $u_{n+1}=\frac{v_n}{1+v_n},\quad v_{n+1}=\frac {u_n}{1+u_n},$
$u_{n+1}=\frac{v_n}{1+u_n},\quad v_{n+1}=\frac {u_n}{1+v_n},$ and $u_{n+1}=\frac{u_n}{1+v_n},\quad v_{n+1}=\frac {v_n}{1+u_n},$ where $$n\in {\mathbb N}_0$$ and the initial values $$u_0$$ and $$v_0$$ are given complex numbers. By help of the auxiliary Riccati equation $x_{n+1}=\frac{x_n}{a+bx_n}, \quad a,\,b\in \mathbb C,\,\,n\in {\mathbb N}_0,$ the general solution of each system is explicitly given. As a consequence, the asymptotic behaviour of the solutions is analysed in detail as $$n\rightarrow \infty$$.

MSC:
 39A20 Multiplicative and other generalized difference equations 39A22 Growth, boundedness, comparison of solutions to difference equations 39A23 Periodic solutions of difference equations 39A30 Stability theory for difference equations
Full Text:
References:
  Berg, L., On the asymptotics of nonlinear difference equations, Z. anal. anwend., 21, 4, 1061-1074, (2002) · Zbl 1030.39006  Berg, L., On the asymptotics of difference equation $$x_{n - 3} = x_n(1 + x_{n - 1} x_{n - 2})$$, J. differ. equ. appl., 14, 1, 105-108, (2008) · Zbl 1138.39003  Berg, L.; Stević, S., On difference equations with powers as solutions and their connection with invariant curves, Appl. math. comput., 217, 7191-7196, (2011) · Zbl 1260.39002  Berg, L.; Stević, S., On the asymptotics of the difference equation $$y_n(1 + y_{n - 1} \cdots y_{n - k + 1}) = y_{n - k}$$, J. differ. equ. appl., 17, 4, 577-586, (2011) · Zbl 1220.39011  Bibby, J., Axiomatisations of the average and a further generalisation of monotonic sequences, Glasgow math. J., 15, 63-65, (1974) · Zbl 0291.40003  Copson, E.T., On a generalisation of monotonic sequences, Proc. Edinburgh math. soc., 2, 17, 159-164, (1970) · Zbl 0223.40001  Iričanin, B.; Stević, S., Some systems of nonlinear difference equations of higher order with periodic solutions, Dynam. contin. discrete impuls. syst., 13a, 3-4, 499-508, (2006) · Zbl 1098.39003  Kent, C.M., Convergence of solutions in a nonhyperbolic case, Nonlinear anal., 47, 4651-4665, (2001) · Zbl 1042.39507  Levy, H.; Lessman, F., Finite difference equations, (1961), Macmillan New York · Zbl 0092.07702  Papaschinopoulos, G.; Schinas, C.J., On a system of two nonlinear difference equations, J. math. anal. appl., 219, 2, 415-426, (1998) · Zbl 0908.39003  Papaschinopoulos, G.; Schinas, C.J., Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear anal. TMA, 46, 7, 967-978, (2001) · Zbl 1003.39007  Papaschinopoulos, G.; Schinas, C.J., On the system of two difference equations $$x_{n + 1} = \sum_{i = 0}^k A_i / y_{n - i}^{p_i}, y_{n + 1} = \sum_{i = 0}^k B_i / x_{n - i}^{q_i}$$, J. math. anal. appl., 273, 2, 294-309, (2002) · Zbl 1014.39016  Russel, D.C., On bounded sequences satisfying a linear inequality, Proc. Edinburgh math. soc., 19, 11-16, (1973)  Stević, S., On the recursive sequence $$x_{n + 1} = x_{n - 1} / g(x_n)$$, Taiwanese J. math., 6, 3, 405-414, (2002) · Zbl 1019.39010  Stević, S., Asymptotic behaviour of a nonlinear difference equation, Indian J. pure appl. math., 34, 12, 1681-1687, (2003) · Zbl 1049.39012  Stević, S., A short proof of the cushing – henson conjecture, Discrete dyn. nat. soc., 2006, 37264-1-37264-5, (2006) · Zbl 1149.39300  Stević, S., Global stability and asymptotics of some classes of rational difference equations, J. math. anal. appl., 316, 60-68, (2006) · Zbl 1090.39009  Stević, S., On positive solutions of a $$(k + 1)$$th order difference equation, Appl. math. lett., 19, 5, 427-431, (2006) · Zbl 1095.39010  Stević, S., Asymptotics of some classes of higher order difference equations, Discrete dyn. nat. soc., 2007, 56813-1-56813-20, (2007) · Zbl 1180.39009  Stević, S., Existence of nontrivial solutions of a rational difference equation, Appl. math. lett., 20, 28-31, (2007) · Zbl 1131.39009  Stević, S., Nontrivial solutions of a higher-order rational difference equation, Math. notes, 84, 5-6, 718-724, (2008) · Zbl 1219.39007  Stević, S., On the recursive sequence $$x_{n + 1} = \max \left\{c, x_n^p / x_{n - 1}^p\right\}$$, Appl. math. lett., 21, 8, 791-796, (2008) · Zbl 1152.39012  Stević, S., Global stability of a MAX-type equation, Appl. math. comput., 216, 354-356, (2010) · Zbl 1193.39009  Stević, S., Global stability of some symmetric difference equations, Appl. math. comput., 216, 179-186, (2010) · Zbl 1193.39008  Stević, S., On a nonlinear generalized MAX-type difference equation, J. math. anal. appl., 376, 317-328, (2011) · Zbl 1208.39014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.