×

Dynamics of certain anti-competitive systems of rational difference equations in the plane. (English) Zbl 1243.39012

The authors study the existence of a positive equilibrium and the global behavior of solutions for a system of two rational difference equations with positive coefficients and positive initial conditions.

MSC:

39A22 Growth, boundedness, comparison of solutions to difference equations
39A30 Stability theory for difference equations
39A20 Multiplicative and other generalized difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/10236190802125264 · Zbl 1169.39010
[2] DOI: 10.1016/S0362-546X(02)00294-8 · Zbl 1019.39006
[3] DOI: 10.1080/10236190410001652739 · Zbl 1071.39005
[4] DOI: 10.1007/BF00276900 · Zbl 0474.92015
[5] Grove E.A., Periodicities in Nonlinear Difference Equations (2004) · Zbl 1078.39009
[6] DOI: 10.1137/0513013 · Zbl 0494.34017
[7] Hirsch M., Handbook of Differential Equations: Ordinary Differential Equations 2 pp 239– (2005)
[8] Kocic V.L., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications (1993) · Zbl 0787.39001
[9] DOI: 10.1201/9781420035384
[10] DOI: 10.1080/10236190410001731434 · Zbl 1061.39006
[11] Kulenović M.R.S., Math. Sci. Res. Hot-Line 2 pp 1– (1998)
[12] DOI: 10.1201/9781420035353
[13] Kulenović M.R.S., Discrete Contin. Dyn. Syst. Ser. B 6 pp 97– (2006)
[14] DOI: 10.3934/dcdsb.2006.6.1141 · Zbl 1116.37030
[15] DOI: 10.3934/dcdsb.2009.12.133 · Zbl 1175.37058
[16] Kulenović M.R.S., Rad. Mat. 11 pp 59– (2002)
[17] DOI: 10.1155/JIA.2005.127 · Zbl 1086.39008
[18] Robinson C., Stability, Symbolic Dynamics, and Chaos (1995)
[19] DOI: 10.1137/0517075 · Zbl 0606.47056
[20] DOI: 10.1016/0022-0396(86)90086-0 · Zbl 0596.34013
[21] DOI: 10.1137/0517091 · Zbl 0609.34048
[22] DOI: 10.1080/10236199708808108 · Zbl 0907.39004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.