×

Bernstein-type operators on a triangle with all curved sides. (English) Zbl 1243.41009

Summary: We construct and analyze Bernstein-type operators on triangles with curved sides, their product and Boolean sum. We study the interpolation properties and approximation accuracy. Using the modulus of continuity we also study the remainders of the corresponding approximation formulas. Finally, there are given some particular cases and numerical examples.

MSC:

41A36 Approximation by positive operators
65D17 Computer-aided design (modeling of curves and surfaces)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Altomare, F.; Raşa, I., Feller semigroups, Bernstein-type operators and generalized convexity associated with positive projections, (New Developments in Approximation Theory (Dortmund 1998). New Developments in Approximation Theory (Dortmund 1998), Internat. Ser. Numer. Math., 132 (1999), Birkhauser: Birkhauser Basel) · Zbl 0938.41013
[2] Barnhill, R. E., Smooth interpolation over triangles, (Barnhill, R. E.; Riesenfeld, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York) · Zbl 0348.41003
[3] Barnhill, R. E., Surfaces in computer aided geometric design: survey with new results, Comput. Aided Geom. Design, 2, 1-17 (1985) · Zbl 0597.65001
[4] Barnhill, R. E.; Birkhoff, G.; Gordon, W. J., Smooth interpolation in triangle, J. Approx. Theory, 8, 114-128 (1983) · Zbl 0271.41002
[5] Barnhill, R. E.; Gregory, I. A., Polynomial interpolation to boundary data on triangles, Math. Comput., 29, 131, 726-735 (1975) · Zbl 0313.65098
[6] Barnhill, R. E.; Mansfield, L., Error bounds for smooth interpolation in triangles, J. Approx. Theory, 11, 306-318 (1974) · Zbl 0286.41001
[7] Barnhill, R. E.; Ou, H. S., Surfaces defined on surfaces, Comput. Aided Geom. Design, 7, 323-336 (1990) · Zbl 0726.65013
[8] Bernardi, C., Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal., 26, 5, 1212-1240 (1989) · Zbl 0678.65003
[9] Blaga, P.; Coman, G., Bernstein-type operators on triangle, Rev. Anal. Numer. Theor. Approx., 37, 1, 9-21 (2009)
[11] Blaga, P.; Cătinaş, T.; Coman, G., Bernstein-type operators on tetrahedrons, Stud. Univ. Babeş-Bolyai Math., 54, 4, 3-19 (2009)
[12] Böhmer, K.; Coman, G., Blending interpolation schemes on triangle with error bounds, Lecture Notes in Mathematics, vol. 571 (1977), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York, 14-37 · Zbl 0353.41002
[13] Cătinaş, T.; Coman, G., Some interpolation operators on a simplex domain, Stud. Univ. Babeş-Bolyai Math., 52, 3, 25-34 (2007)
[14] Coman, G.; Blaga, P., Interpolation operators with applications (1), Sci. Math. Jpn., 68, 3, 383-416 (2008) · Zbl 1171.41002
[15] Coman, G.; Blaga, P., Interpolation operators with applications (2), Sci. Math. Jpn., 69, 1, 111-152 (2009) · Zbl 1172.41001
[16] Coman, G.; Cătinaş, T., Interpolation operators on a triangle with one curved side, BIT, 50, 2, 243-267 (2010) · Zbl 1200.41002
[17] Coman, G.; Cătinaş, T., Interpolation operators on a tetrahedron with three curved sides, Calcolo, 47, 2, 113-128 (2010)
[18] Della Vecchia, B.; Mastroianni, G.; Szabados, J., Weighted approximation of functions on the real line by Bernstein polynomials, J. Approx. Theory, 127, 2, 223-239 (2004) · Zbl 1065.41039
[19] Della Vecchia, B.; Mastroianni, G.; Szabados, J., Generalized Bernstein polynomials with Pollaczek weight, J. Approx. Theory, 159, 2, 180-196 (2009) · Zbl 1180.41018
[20] Foley, T. A.; Lane, D. A.; Nielson, G. M., Interpolation of scattered data on closed surfaces, Comput. Aided Geom. Design, 7, 303-312 (1990) · Zbl 0711.65004
[21] Gavrea, I.; Ivan, M., An extremal property for a class of positive linear operators, J. Approx. Theory, 162, 1, 6-9 (2010) · Zbl 1242.41024
[22] Gonska, H.; Piţul, P.; Raşa, I., On differences of positive linear operators, Carpathian J. Math., 22, 65-78 (2006) · Zbl 1150.41012
[23] Hall, C. A., Bicubic interpolation over triangles, J. Math. Mech., 19, 1-11 (1969) · Zbl 0194.47102
[24] Marshall, J. A.; McLeod, R., Curved elements in the finite element method, (Conference Numer. Sol. Diff. Eq.. Conference Numer. Sol. Diff. Eq., Lectures Notes in Math., 363 (1974), Springer Verlag), 89-104
[25] Marshall, J. A.; Mitchell, A. R., Blending interpolants in the finite element method, Inter. J. Numer. Meth. Eng., 12, 77-83 (1978) · Zbl 0371.65002
[26] Nielson, G. M.; Thomas, D. H.; Wixom, J. A., Interpolation in triangles, Bull. Austral. Math. Soc., 20, 1, 115-130 (1979) · Zbl 0397.65007
[27] Piţul, P.; Sablonnière, P., A family of univariate rational Bernstein operators, J. Approx. Theory, 160, 1-2, 39-55 (2009) · Zbl 1180.41010
[28] Renka, R. J.; Cline, A. K., A triangle-based \(C^1\) interpolation method, Rocky Mountain J. Math., 14, 1, 223-237 (1984) · Zbl 0568.65006
[29] Stancu, D. D., Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comput., 17, 270-278 (1963) · Zbl 0114.27102
[30] Stancu, D. D., A method for obtaining polynomials of Bernstein type of two variables, Amer. Math. Monthly, 70, 260-264 (1963) · Zbl 0111.26604
[31] Stancu, D. D., Approximation of bivariate functions by means of some Bernstein-type operators, Multivariate Approximation (Sympos., Univ. Durham, Durham, 1977) (1978), Academic Press: Academic Press London-New York, pp. 189-208 · Zbl 0412.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.