zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On diffraction Fresnel transforms for Boehmians. (English) Zbl 1243.46032
Summary: The theory of the diffraction Fresnel transform is extended to certain spaces of Schwartz distributions. In the context of Boehmian spaces, the diffraction Fresnel transform is obtained as a continuous function. Convergence with respect to $\delta$ and $\Delta$ is also defined.

46F12Integral transforms in distribution spaces
Full Text: DOI
[1] V. Namias, “The fractional order fourier transform and its application to quantum mechanics,” IMA Journal of Applied Mathematics, vol. 25, no. 3, pp. 241-265, 1980. · Zbl 0434.42014 · doi:10.1093/imamat/25.3.241
[2] D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” Journal of the Optical Society of America A, vol. 10, no. 9, pp. 1875-1881, 1993. · doi:10.1364/JOSAA.10.001875
[3] H. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation. II,” Journal of the Optical Society of America A, vol. 10, no. 12, pp. 2522-2531, 1993. · doi:10.1364/JOSAA.10.002522
[4] L. M. Bernardo and O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Optics Communications, vol. 110, no. 5-6, pp. 517-522, 1994. · doi:10.1016/0030-4018(94)90242-9
[5] A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” Journal of the Optical Society of America A, vol. 10, no. 10, pp. 2181-2186, 1993. · doi:10.1364/JOSAA.10.002181
[6] A. Kılı\ccman, “On the fresnel sine integral and the convolution,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 37, pp. 2327-2333, 2003. · Zbl 1026.33002 · doi:10.1155/S0161171203211510
[7] A. Kılı\ccman and B. Fisher, “On the fresnel integrals and the convolution,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 41, pp. 2635-2643, 2003. · Zbl 1043.33001 · doi:10.1155/S0161171203211522 · eudml:50875
[8] L. Mertz, Transformations in Optics, Wiley, New York, NY, USA, 1965.
[9] H. Y. Fan and H. L. Lu, “Wave-function transformations by general SU(1, 1) single-mode squeezing and analogy to fresnel transformations in wave optics,” Optics Communications, vol. 258, no. 1, pp. 51-58, 2006. · doi:10.1016/j.optcom.2005.07.044
[10] S. K. Q. Al-Omari, D. Loonker, P. K. Banerji, and S. L. Kalla, “Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultraBoehmian spaces,” Integral Transforms and Special Functions, vol. 19, no. 6, pp. 453-462, 2008. · Zbl 1215.42007 · doi:10.1080/10652460801936721
[11] R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Gordon and Breach Science Publishers, Amsterdam, The Netherlands, 1997.
[12] A. H. Zemanian, Generalized Integral Transformations, Dover Publications, New York, NY, USA, 2nd edition, 1987. · Zbl 0643.46029
[13] S. K. Q. Al-Omari, “The generalized stieltjes and Fourier transforms of certain spaces of generalized functions,” Jordan Journal of Mathematics and Statistics, vol. 2, no. 2, pp. 55-66, 2009. · Zbl 1279.40004
[14] S. K. Q. Al-Omari, “On the distributional Mellin transformation and its extension to Boehmian spaces,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 17, pp. 801-810, 2011. · Zbl 1245.46032
[15] S. K. Q. Al-Omari, “A Mellin transform for a space of lebesgue integrable Boehmians,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 32, pp. 1597-1606, 2011. · Zbl 1253.46047
[16] T. K. Boehme, “The support of Mikusinski operators,” Transactions of the American Mathematical Society, vol. 176, pp. 319-334, 1973. · Zbl 0268.44005 · doi:10.2307/1996211
[17] P. Mikusiński, “Fourier transform for integrable Boehmians,” Rocky Mountain Journal of Mathematics, vol. 17, no. 3, pp. 577-582, 1987. · Zbl 0629.44005 · doi:10.1216/RMJ-1987-17-3-577
[18] P. Mikusiński, “Convergence of Boehmians,” Japanese Journal of Mathematics, vol. 9, no. 1, pp. 159-179, 1983. · Zbl 0524.44005
[19] R. Roopkumar, “Mellin transform for Boehmians,” Bulletin of the Institute of Mathematics. Academia Sinica, vol. 4, no. 1, pp. 75-96, 2009. · Zbl 1182.46030