zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving large-scale least squares semidefinite programming by alternating direction methods. (English) Zbl 1243.49039
Summary: The well-known Least Squares SemiDefinite Programming (LSSDP) problem seeks the nearest adjustment of a given symmetric matrix in the intersection of the cone of positive semidefinite matrices and a set of linear constraints, and it captures many applications in diversing fields. The task of solving large-scale LSSDP with many linear constraints, however, is numerically challenging. This paper mainly shows the applicability of the classical Alternating Direction Method (ADM) for solving LSSDP and convinces the efficiency of the ADM approach. We compare the ADM approach with some other existing approaches numerically, and we show the superiority of ADM for solving large-scale LSSDP.

49M29Methods involving duality in calculus of variations
90C22Semidefinite programming
90C06Large-scale problems (mathematical programming)
90C25Convex programming
Full Text: DOI