Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces. (English) Zbl 1243.53071

Summary: We give pinching theorems for the first nonzero eigenvalue of the Laplacian on compact hypersurfaces of ambient spaces with bounded sectional curvature. As an application we deduce a rigidity result for stable constant mean curvature hypersurfaces \(M\) of these spaces \(N\). Indeed, we prove that if \(M\) is included in a ball of radius small enough then the Hausdorff-distance between \(M\) and a geodesic sphere \(S\) of \(N\) is small. Moreover \(M\) is diffeomorphic and quasi-isometric to \(S\). As other application, we obtain rigidity results for almost umbilic hypersurfaces.


53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53C24 Rigidity results
Full Text: DOI arXiv


[1] Aubry E.: Diameter pinching in almost positive Ricci curvature. Comm. Math. Helv. 84(2), 223–233 (2009) · Zbl 1167.53033
[2] Aubry, E., Grosjean, J.-F., Roth, J.: Hypersurfaces with small extrinsic radius or large {\(\lambda\)}1 in Euclidean spaces (preprint, 2010)
[3] Baikoussis C., Koufogiorgos T.: The diameter of an immersed Riemannian manifold with bounded mean curvature. J. Aust. Soc. (Series A) 31, 189–192 (1981) · Zbl 0468.53044
[4] Barbosa J.L., do Carmo M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3), 339–353 (1984) · Zbl 0529.53006
[5] Chavel, I.: Riemannian geometry–A Modern Introduction, Cambridge university press, New York · Zbl 0819.53001
[6] Colbois B., Grosjean J.F.: A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space. Comm. Math. Helv. 82, 175–195 (2007) · Zbl 1112.53003
[7] Druet O.: Isoperimetric inequalities on compact manifolds. Geom. Dedicata. 90, 217–236 (2002) · Zbl 1025.58014
[8] Druet, O.: Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Am. Math. Soc. 130(8), 2351–2361 · Zbl 1067.53026
[9] El Soufi A., Ilias S.: Une inégalité du type ”Reilly” pour les sous-variétés de l’espace hyperbolique. Comm. Math. Helv. 67, 167–181 (1992) · Zbl 0758.53029
[10] Heintze E.: Extrinsic upper bound for {\(\lambda\)}1. Math. Ann. 280, 389–402 (1988) · Zbl 0628.53044
[11] Hoffman D., Spruck J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27, 715–727 (1974) · Zbl 0295.53025
[12] Hoffman D., Spruck J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds, Erratum. Comm. Pure Appl. Math. 28, 765–766 (1975) · Zbl 0327.53035
[13] Michael J.H., Simon L.M.: Sobolev and mean-value inequalities on generalized submanifolds of R n . Comm. Pure Appl. Math. 26, 361–379 (1973) · Zbl 0256.53006
[14] Morgan F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. AMS 355(12), 5041–5052 (2003) · Zbl 1063.49031
[15] Morgan F., Johnson D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(2), 1017–1041 (2000) · Zbl 1021.53020
[16] Nardulli S.: The isoperimetric profile of a smooth Riemannian manifold for small volumes. Ann. Glob. Anal. Geom. 36(2), 111–131 (2009) · Zbl 1175.53048
[17] Reilly R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comm. Math. Helv. 52, 525–533 (1977) · Zbl 0382.53038
[18] Ros A.: The Isoperimetric Prolem. Lecture series at the Clay Mathematics Institute. Summer School on the Global Theory of Minimal Surfaces, Berkeley (2001) · Zbl 1005.53054
[19] Roth J.: Extrinsic radius pinching for hypersurfaces of space forms. Differ. Geom. Appl. 25(5), 485–499 (2007) · Zbl 1136.53035
[20] Sakai, T.: Riemannian geometry, A.M.S. translations. Mathematics Monographs, vol. 149 (1996) · Zbl 0886.53002
[21] Shiohama K., Xu H.: Rigidity and sphere theorems for submanifolds. Kyushu J. Math. 48(2), 291–306 (1994) · Zbl 0826.53045
[22] Shiohama K., Xu H.: Rigidity and sphere theorems for submanifolds II. Kyushu J. Math. 54(1), 103–109 (2000) · Zbl 1005.53028
[23] Ye R.: Foliation by constant mean curvature spheres. Pacif. J. Math. 147(2), 381–396 (1991) · Zbl 0722.53022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.