×

Statistical tests for the intersection of independent lists of genes: sensitivity, FDR, and type I error control. (English) Zbl 1243.62135

Summary: Public data repositories have enabled researchers to compare results across multiple genomic studies in order to replicate findings. A common approach is to first rank genes according to an hypothesis of interest within each study. Then, lists of the top-ranked genes within each study are compared across studies. Genes recaptured as highly ranked (usually above some threshold) in multiple studies are considered to be significant. However, this comparison strategy often remains informal, in that type I error and false discovery rate (FDR) are usually uncontrolled.
We formalize an inferential strategy for this kind of list-intersection discovery tests. We show how to compute a \(p\)-value associated with a “recaptured” set of genes, using a closed-form Poisson approximation to the distribution of the size of the recaptured set. We investigate operating characteristics of the test as a function of the total number of studies considered, the rank threshold within each study, and the number of studies within which a gene must be recaptured to be declared significant. We investigate the trade off between FDR control and expected sensitivity (the expected proportion of true-positive genes identified as significant). We give practical guidance on how to design a bioinformatic list-intersection study with maximal expected sensitivity and prespecified control of type I error (at the set level) and false discovery rate (at the gene level). We show how optimal choice of parameters may depend on particular alternative hypothesis which might hold. We illustrate our methods using prostate cancer gene-expression data sets from the curated Oncomine database, and discuss the effects of dependence between genes on the test.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C40 Biochemistry, molecular biology

Software:

Oncomine; GeneSigDB
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Benjamini, Y. and Heller, R. (2008). Screening for partial conjunction hypotheses. Biometrics 64 1215-1222. · Zbl 1152.62045 · doi:10.1111/j.1541-0420.2007.00984.x
[2] Benjamini, Y., Heller, R. and Yekutieli, D. (2009). Selective inference in complex research. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367 4255-4271. · Zbl 1185.62125 · doi:10.1098/rsta.2009.0127
[3] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165-1188. · Zbl 1041.62061 · doi:10.1214/aos/1013699998
[4] Chan, S. K., Griffith, O. L. et al. (2008). Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiology Biomarkers and Prevention 17 543-552.
[5] Culhane, A. C., Schwarzl, T., Sultana, R., Picard, K. C., Picard, S. C., Lu, T. H., Franklin, K. R., French, S. J., Papenhausen, G., Correll, M. and Quackenbush, J. (2010). GeneSigDB-a curated database of gene expression signatures. Nucleic Acids Res. 38 D716-D725.
[6] Deng, X. T., Xu, J. et al. (2008). Improving the power for detecting overlapping genes from multiple DNA microarray-derived gene lists. BMC Bioinformatics 9 8.
[7] Dhanasekaran, S. M., Dash, A., Yu, N., Maine, I. P., Laxman, B., Tomlins, S. A., Creighton, C. N., Menon, A., Rubin, M. A. and Chinnaiyan, A. M. (2004). Molecular profiling of human prostate tissues: Insights into gene expression patterns of prostate development during puberty. FASEB N 9 243-245.
[8] Efron, B. (2010). Correlated \(z\)-values and the accuracy of large-scale statistical estimates. J. Amer. Statist. Assoc. 105 1042-1055. · Zbl 1390.62139 · doi:10.1198/jasa.2010.tm09129
[9] Feller, W. (1957). An Introduction to Probability Theory and Its Applications. Vol. I , 2nd ed. Wiley, New York. · Zbl 0077.12201
[10] Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N. and Stratton, M. R. (2004). A census of human cancer genes. Nat. Rev. Cancer 4 177-183.
[11] Garrett-Mayer, E., Parmigiani, G., Zhong, X. G., Cope, L. and Gabrielson, E. (2008). Cross-study validation and combined analysis of gene expression microarray data. Biostatistics 9 333-354. · Zbl 1143.62077 · doi:10.1093/biostatistics/kxm033
[12] Glez-Pena, D., Gomez-Lopez, G., Pisano, D. G. and Fdez-Riverola, F. (2008). WhichGenes: A web-based tool for gathering, building, storing and exporting gene sets. Biostatistics 9 333-354.
[13] Gupta, R. C. and Tao, H. (2010). A generalized correlated binomial distribution with application in multiple testing problems. Metrika 71 59-77. · Zbl 1355.62007 · doi:10.1007/s00184-008-0202-7
[14] Hong, F. X. and Breitling, R. (2008). A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24 374-382.
[15] Irizarry, R. A., Warren, D. et al. (2005). Multiple-laboratory comparison of microarray platforms. Nature Methods 5 345-349.
[16] Jeffries, C. D., Ward, W. O. et al. (2009). Discovering collectively informative descriptors from high-throughput experiments. BMC Bioinformatics 10 9.
[17] Lapointe, N., Li, C., Higgins, N. P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., Ekman, P., DeMarzo, A. M., Tibshirani, R., Botstein, D., Brown, P. O., Brooks, N. D. and Pollack, N. R. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA 101 811-816.
[18] Lu, X., Gamst, A. and Xu, R. (2008). RDCurve: A nonparametric method to evaluate the stability of ranking procedures. Trans. Comput. Biol. Bioinf. 138 719-726.
[19] Miller, B. G. and Stamatoyannopoulos, J. A. (2010). Integrative meta-analysis of differential gene expression in acute myeloid leukemia. PLoS One 5 13.
[20] Natarajan, L., Pu, M. and Messer, K. (2011). Supplement to “Statistical tests for the intersection of independent lists of genes: Sensitivity, FDR, and type I error control.” . · Zbl 1243.62135 · doi:10.1214/11-AOAS510
[21] Pyne, S., Futcher, B. and Skiena, S. (2006). Meta-analysis based on control of false discovery rate: Combining yeast ChIP-chip datasets. Bioinformatics 22 2516-2522.
[22] Rhodes, D. R., Kalyana-Sundaram, S., Mahavisno, V. et al. (2007). Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9 166-180.
[23] Sun, W. and Cai, T. T. (2009). Large-scale multiple testing under dependence. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 393-424. · Zbl 1248.62005 · doi:10.1111/j.1467-9868.2008.00694.x
[24] Tiwari, G., Sakaue, H., Pollack, N. R. and Roth, R. A. (2003). Gene expression profiling in prostate cancer cells with Akt activation reveals Fra-1 as an Akt-inducible gene. Molecular Cancer Research 1 475-484.
[25] Tomlins, S. A., Rhodes, D. A., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X., Varambally, S., Cao, X., Tchinda, N., Kuefer, R. et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor gens in prostate cancer. Science 310 644-648.
[26] Tomlins, S. A., Mehra, R., Rhodes, D. R., Cao, X., Wang, L., Dhanasekaran, S. M., Kalyana-Sundaram, S., Wei, N. T., Rubin, M. A., Pienta, K. N., Shah, R. B. and Chinnaiyan, A. M. (2006). Integrative molecular concept modeling of prostate cancer progression. Nature Genetics 39 41-51.
[27] Yu, C. and Zelterman, D. (2002). Sums of dependent Bernoulli random variables and disease clustering. Statist. Probab. Lett. 57 363-373. · Zbl 1004.60008
[28] Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H. and Weir, B. S. (2002). Truncated product method for combining \(\mathrm{P}\)-values. Genet. Epidemiol. 22 170-185.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.