zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The numerical solution of the non-linear integro-differential equations based on the meshless method. (English) Zbl 1243.65154
The paper is concerned with numerical solution of nonlinear integro-differential equations based on a moving least squares method. The material is presented as follows: the authors introduce the moving least squares method and then show how it can be applied to problems of Fredholm type. They provide a detailed error analysis. This is repeated for the Volterra-type problem. The paper concludes with some numerical examples that demonstrate the efficacy of the approach.

65R20Integral equations (numerical methods)
45D05Volterra integral equations
45G10Nonsingular nonlinear integral equations
47G20Integro-differential operators
45B05Fredholm integral equations
45J05Integro-ordinary differential equations
Full Text: DOI
[1] Akyüz, A.; Sezer, M.: A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form, Int. J. Comput. math. 84, 527-539 (2007) · Zbl 1118.65129 · doi:10.1080/00207160701227848
[2] Bülbül, B.; Sezer, M.: Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients, Int. J. Comput. math. 88, 533-544 (2011) · Zbl 1211.65131 · doi:10.1080/00207161003611242
[3] Streltsov, I. P.: Approximation of Chebyshev and Legendre polynomials on discrete point set to function interpolation and solving Fredholm integral equations, Comput. phys. Comm. 126, 178-181 (2000) · Zbl 0963.65143 · doi:10.1016/S0010-4655(99)00520-2
[4] Maleknejad, K.; Kajani, M. Tavassoli: Solving second kind integral equation by Galerkin methods with hybrid Legendre and block--pulse functions, Appl. math. Comput. 145, 623-629 (2003) · Zbl 1101.65323 · doi:10.1016/S0096-3003(03)00139-5
[5] Bildik, N.; Konuralp, A.; Yalcı\ogonek nbaş, S.: Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integro-differential equations, Comput. math. Appl. 59, 1909-1917 (2010) · Zbl 1189.65307 · doi:10.1016/j.camwa.2009.06.022
[6] Wang, S. H.; He, J. H.: Variational iteration method for solving integro-differential equations, Phys. lett. A 367, 188-191 (2007) · Zbl 1209.65152 · doi:10.1016/j.physleta.2007.02.049
[7] Ramos, J. I.: Iterative and non-iterative methods for non-linear Volterra integro-differential equations, Appl. math. Comput. 214, 287-296 (2009) · Zbl 1202.65179 · doi:10.1016/j.amc.2009.03.067
[8] Feldstein, A.; Sopka, J. R.: Numerical methods for nonlinear Volterra integro-differential equations, SIAM J. Numer. anal. 11, 826-846 (1974) · Zbl 0291.65029 · doi:10.1137/0711067
[9] Kajani, M. Tavassoli; Ghasemi, M.; Babolian, E.: Numerical solution of linear integro-differential equation by using sine-cosine wavelets, Appl. math. Comput. 180, 569-574 (2006) · Zbl 1102.65137 · doi:10.1016/j.amc.2005.12.044
[10] Atkinson, K.: The numerical solution of integral equations of the second kind, (1997) · Zbl 0899.65077
[11] Wazwaz, A. M.: A first course in integral equations, (1997) · Zbl 0924.45001
[12] Lancaster, P.; Salkauskas, K.: Surface generated by moving least squares methods, Math. comp. 37, 41-58 (1981) · Zbl 0469.41005 · doi:10.2307/2007507
[13] Levin, D.: The approximation power of moving least-squares, Math. comp. 67, 17-31 (1998) · Zbl 0911.41016 · doi:10.1090/S0025-5718-98-00974-0
[14] Breitkopf, P.; Naceur, H.; Rassineux, A.; Villon, P.: Moving least squares response surface approximation: formulation and metal forming applications, Comput. struct. 83, 11-28 (2005)
[15] Bucher, C.; Macke, M.; Most, T.: Approximate response functions in structural reliability analysis, Proceedings of the fifth computational stochastic mechanics conference, rhodos, Greece, June 21--23, 2006 (2006)
[16] Nayroles, B.; Touzot, G.; Villon, P.: Generalizing the FEM: diffuse approximations and diffuse elements, Comput. mech. 10, 7-18 (1992) · Zbl 0764.65068
[17] Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods, Internat. J. Numer. methods engrg. 37, 29-56 (1994) · Zbl 0796.73077
[18] Atluri, S. N.; Zhu, T.: A new meshless local Petrov--Galerkin (MLPG) approach in computational mechanics, Comput. mech. 22, 17-27 (1998) · Zbl 0932.76067 · doi:10.1007/s004660050346
[19] Dehghan, M.; Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math. comput. Simul. 79, 700-715 (2008) · Zbl 1155.65379 · doi:10.1016/j.matcom.2008.04.018
[20] Dehghan, M.; Mirzaei, D.: Meshless local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity, Appl. numer. Math. 59, 1043-1058 (2009) · Zbl 1159.76034 · doi:10.1016/j.apnum.2008.05.001
[21] Dehghan, M.; Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, Eng. anal. Bound. elem. 34, 324-336 (2010) · Zbl 1244.65147
[22] Dehghan, M.; Salehi, R.: A boundary-only meshless method for numerical solution of the eikonal equation, Comput. mech. 47, 283-294 (2011) · Zbl 05873377
[23] Dehghan, M.; Salehi, R.: The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas, Comput. phys. Comm. 182, 2540-2549 (2011) · Zbl 1263.76047
[24] Tatari, M.; Dehghan, M.: On the solution of the non-local parabolic partial differential equations via radial basis functions, Appl. math. Model. 33, 1729-1738 (2009) · Zbl 1168.65403 · doi:10.1016/j.apm.2008.03.006
[25] Mirzaei, D.; Dehghan, M.: A meshless based method for solution of integral equations, Appl. numer. Math. 60, 245-262 (2010) · Zbl 1202.65174 · doi:10.1016/j.apnum.2009.12.003
[26] Shepard, D.: A two-dimensional interpolation function for irregularly spaced points, , 517-524 (1968)
[27] Mclain, D. H.: Drawing contours from arbitary data points, Computing 17, 318-324 (1974)
[28] Mclain, D. H.: Two dimensional interpolation from random data, Computing 19, 178-181 (1976) · Zbl 0321.65009
[29] Franke, R.; Nielson, G.: Smooth interpolation of large sets of scattered data, Internat. J. Numer. methods engrg. 15, 1691-1704 (1980) · Zbl 0444.65011 · doi:10.1002/nme.1620151110
[30] Armentano, M. G.; Durán, R. G.: Error estimates for moving least square approximations, Appl. numer. Math. 37, 397-416 (2001) · Zbl 0984.65096 · doi:10.1016/S0168-9274(00)00054-4
[31] Armentano, M. G.: Error estimates in Sobolev spaces for moving least square approximations, SIAM J. Numer. anal. 39, 38-51 (2001) · Zbl 1001.65014 · doi:10.1137/S0036142999361608
[32] Zuppa, C.: Error estimates for moving least square approximations, Bull. braz. Math. soc. (N.S.) 34, 231-249 (2003) · Zbl 1056.41007 · doi:10.1007/s00574-003-0010-7
[33] Li, X.; Zhu, J.: A Galerkin boundary node method and its convergence analysis, J. comput. Appl. math. 230, 314-328 (2009) · Zbl 1189.65291 · doi:10.1016/j.cam.2008.12.003
[34] Zuppa, C.: Good quality point sets and error estimates for moving least square approximations, Appl. numer. Math. 47, 575-585 (2003) · Zbl 1040.65034 · doi:10.1016/S0168-9274(03)00091-6
[35] Babuška, I.; Banerjee, U.; Osborn, J. E.; Zhang, Q.: Effect of numerical integration on meshless methods, Comput. methods appl. Mech. engrg. 198, 2886-2897 (2009) · Zbl 1229.65204 · doi:10.1016/j.cma.2009.04.008
[36] Kambo, N. S.: Error of the Newton--cotes and Gauss--Legendre quadrature formulas, Math. comp. 24, 261-269 (1970) · Zbl 0264.65018 · doi:10.2307/2004476