×

zbMATH — the first resource for mathematics

A theory of anisotropic healing and damage mechanics of materials. (English) Zbl 1243.74125
Summary: Self-healing smart materials have emerged into the research arena and have been deployed in industrial and biomedical applications, in which the modelling techniques and predicting schemes are crucial for designers to optimize these smart materials. In practice, plastic deformation is coupled with damage and healing in these systems, which necessitates a coupled formulation for characterization. The thermodynamics of inelastic deformation, damage and healing processes are incorporated here to establish the coupled constitutive equations for healing materials. This thermodynamic consistent formulation provides the designers with the ability to predict the irregular inelastic deformation of glassy polymers and damage and healing patterns for a highly anisotropic self-healing system. Moreover, the lack of a physically consistent method to measure and calibrate the healing process in the literature is addressed here. Within the continuum damage mechanics (CDM) framework, the physics of damage and healing processes is used to introduce the healing effect into the CDM concept and a set of two new anisotropic damage-healing variables are derived. These novel damage-healing variables together with the proposed thermodynamic consistent coupled theory constitute a well-structured method for accurately predicting the degradation and healing mechanisms in material systems. The inelastic and damage response for a shape memory polymer-based self-healing system is captured herein. While the healing experimental results are limited in the literature, the proposed theory provides the mathematical competency to capture the most nonlinear responses.

MSC:
74M05 Control, switches and devices (“smart materials”) in solid mechanics
74A15 Thermodynamics in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74L15 Biomechanical solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 30 pp 23– (1999)
[2] PHIL MAG 28 pp 839– (1973) · doi:10.1080/14786437308220987
[3] STANDARD TEST METHOD FOR FLATWISE COMPRESSIVE PROPERTIES OF SANDWICH CORES
[4] J DAMAGE MECH 14 pp 51– (2005) · doi:10.1177/1056789505045928
[5] 7 pp 15– (1988)
[6] 7 pp 35– (1988)
[7] INT J PLAST 5 pp 593– (1989) · doi:10.1016/0749-6419(89)90003-X
[8] PROC ROY SOC A MATH PHYS ENG SCI 464 pp 2001– (2008) · Zbl 1145.90361 · doi:10.1098/rspa.2007.0371
[9] INT J PLAST 7 pp 661– (1991) · doi:10.1016/0749-6419(91)90050-9
[10] INT J SOLIDS STRUCT 34 pp 2239– (1997) · Zbl 0942.74535 · doi:10.1016/S0020-7683(96)00162-X
[11] INT J PLASTICITY 24 pp 1642– (2008) · Zbl 1142.74012 · doi:10.1016/j.ijplas.2008.03.009
[12] 39 pp 39– (2007)
[13] INT J SOLIDS STRUCT 39 pp 3857– (2002) · doi:10.1016/S0020-7683(02)00184-1
[14] INT J SOLIDS STRUCT 31 pp 359– (1994) · Zbl 0853.73006 · doi:10.1016/0020-7683(94)90112-0
[15] Iwakuma, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 394 (1806) pp 87– (1984) · Zbl 0549.73029 · doi:10.1098/rspa.1984.0071
[16] IZV AKAD NAUK USSR OTD TEKH 8 pp 26– (1958)
[17] INT J PLAST 17 pp 1167– (2001) · Zbl 1097.74501 · doi:10.1016/S0749-6419(00)00073-5
[18] INT J PLAST 19 pp 1069– (2003) · Zbl 1090.74522 · doi:10.1016/S0749-6419(03)00002-0
[19] 51 pp 31– (1985)
[20] ENG FRACT MECH 28 pp 643– (1987) · doi:10.1016/0013-7944(87)90059-2
[21] 68 pp 3337– (2008) · doi:10.1016/j.compscitech.2008.09.009
[22] POLYMER 51 pp 755– (2010) · Zbl 1298.76020 · doi:10.1016/j.polymer.2009.12.002
[23] 70 pp 1419– (2010) · doi:10.1016/j.compscitech.2010.04.026
[24] 208 pp 224– (2007) · doi:10.1002/macp.200600445
[25] J APPL MECH 55 pp 280– (1988) · doi:10.1115/1.3173673
[26] Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2114) pp 423– (2010) · Zbl 1195.74033 · doi:10.1098/rspa.2009.0348
[27] Nemat-Nasser, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 407 (1833) pp 343– (1986) · doi:10.1098/rspa.1986.0101
[28] POLYMER 51 pp 6021– (2010) · Zbl 1298.76020 · doi:10.1016/j.polymer.2010.10.021
[29] ACTA MATERIALIA 55 pp 5684– (2007) · doi:10.1016/j.actamat.2007.06.019
[30] INT J NUMER METHODS ENG 22 pp 649– (1986) · Zbl 0585.73059 · doi:10.1002/nme.1620220310
[31] COMPUT MECH 20 pp 520– (1997) · Zbl 0909.73028 · doi:10.1007/s004660050272
[32] Toohey, Nature materials 6 (8) pp 581– (2007) · doi:10.1038/nmat1934
[33] INT J PLAST 19 pp 2121– (2003) · Zbl 1145.74338 · doi:10.1016/S0749-6419(03)00062-7
[34] MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 13 pp 285– (2006) · doi:10.1080/15376490600582784
[35] MECHANICS RESEARCH COMMUNICATIONS 34 pp 145– (2007) · Zbl 1192.74019 · doi:10.1016/j.mechrescom.2006.09.004
[36] MECHANICS RESEARCH COMMUNICATIONS 34 pp 155– (2007) · Zbl 1192.74020 · doi:10.1016/j.mechrescom.2006.09.005
[37] INT J PLAST 27 pp 1025– (2011) · Zbl 06032961 · doi:10.1016/j.ijplas.2010.11.002
[38] International Journal of Damage Mechanics 21 (3) pp 391– (2012) · doi:10.1177/1056789510397069
[39] INT J PLASTICITY
[40] White, Nature; Physical Science (London) 409 (6822) pp 794– (2001) · doi:10.1038/35057232
[41] INT J SOLIDS STRUCT 47 pp 1306– (2010) · Zbl 1193.74005 · doi:10.1016/j.ijsolstr.2010.01.015
[42] J ENG MECH 116 pp 1435– (1990) · doi:10.1061/(ASCE)0733-9399(1990)116:7(1435)
[43] Zako, Journal of Intelligent Material Systems and Structures 10 (10) pp 836– (1999) · doi:10.1106/YEIH-QUDH-FC7W-4QFM
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.