×

zbMATH — the first resource for mathematics

Topics on abelian spin models and related problems. (English) Zbl 1243.82020
Summary: In these notes, we discuss a selection of topics on several models of planar statistical mechanics. We consider the Ising, Potts, and more generally abelian spin models; the discrete Gaussian free field; the random cluster model; and the six-vertex model. Emphasis is put on duality, order, disorder and spinor variables, and on mappings between these models.

MSC:
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60G15 Gaussian processes
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Arguin, L.-P. (2002). Homology of Fortuin-Kasteleyn clusters of Potts models on the torus. J. Stat. Phys. 109 301-310. · Zbl 1027.82007 · doi:10.1023/A:1019979326380
[2] Baxter, R. J. (1989). Exactly Solved Models in Statistical Mechanics . Academic Press [Harcourt Brace Jovanovich Publishers], London. Reprint of the 1982 original. · Zbl 0723.60120
[3] Cohn, H., Kenyon, R. and Propp, J. (2001). A variational principle for domino tilings. J. Amer. Math. Soc. 14 297-346 (electronic). · Zbl 1037.82016 · doi:10.1090/S0894-0347-00-00355-6
[4] Di Francesco, P., Mathieu, P. and Sénéchal, D. (1997). Conformal Field Theory . Graduate Texts in Contemporary Physics . Springer, New York. · Zbl 0869.53052
[5] Di Francesco, P., Saleur, H. and Zuber, J. B. (1987). Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models. J. Stat. Phys. 49 57-79. · Zbl 0960.82507 · doi:10.1007/BF01009954
[6] Dubédat, J. Dimers and analytic torsion I. arXiv: · Zbl 1321.82011 · arxiv.org
[7] Edwards, R. G. and Sokal, A. D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D (3) 38 2009-2012. · doi:10.1103/PhysRevD.38.2009
[8] Elkies, N., Kuperberg, G., Larsen, M. and Propp, J. (1992). Alternating-sign matrices and domino tilings. I. J. Algebraic Combin. 1 111-132. · Zbl 0779.05009 · doi:10.1023/A:1022420103267
[9] Elkies, N., Kuperberg, G., Larsen, M. and Propp, J. (1992). Alternating-sign matrices and domino tilings. II. J. Algebraic Combin. 1 219-234. · Zbl 0788.05017 · doi:10.1023/A:1022483817303
[10] Fan, C. and Wu, F. Y. (Aug 1970). General lattice model of phase transitions. Phys. Rev. B 2 723-733.
[11] Fateev, V. A. and Zamolodchikov, A. B. (1982). Self-dual solutions of the star-triangle relations in Z N -models. Phys. Lett. A 92 37-39. · doi:10.1016/0375-9601(82)90736-8
[12] Ferrari, P. L. and Spohn, H. (2006). Domino tilings and the six-vertex model at its free-fermion point. J. Phys. A 39 10297-10306. · Zbl 1114.82006 · doi:10.1088/0305-4470/39/33/003
[13] Fisher, M. E. and Stephenson, J. (1963). Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev. (2) 132 1411-1431. · Zbl 0132.22304 · doi:10.1103/PhysRev.132.1411
[14] Gawe\ogonek dzki, K. (1999). Lectures on conformal field theory. In Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) 727-805. Amer. Math. Soc., Providence, RI.
[15] Georgii, H.-O. (2011). Gibbs Measures and Phase Transitions , 2nd ed. de Gruyter Studies in Mathematics 9 . de Gruyter, Berlin. · Zbl 1225.60001
[16] Glimm, J. and Jaffe, A. (1987). Quantum Physics , 2nd ed. Springer, New York. A functional integral point of view. · Zbl 0461.46051
[17] Grimmett, G. (1999). Percolation , 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321 . Springer, Berlin. · Zbl 0926.60004
[18] Grimmett, G. (2006). The Random-cluster Model . Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 333 . Springer, Berlin. · Zbl 0858.60093
[19] Grimmett, G. (2010). Probability on Graphs . Institute of Mathematical Statistics Textbooks 1 . Cambridge Univ. Press, Cambridge. Random processes on graphs and lattices. · Zbl 1228.60003
[20] Grünbaum, F. A. (1982). The eigenvectors of the discrete Fourier transform: A version of the Hermite functions. J. Math. Anal. Appl. 88 355-363. · Zbl 0516.65099 · doi:10.1016/0022-247X(82)90199-8
[21] Ikhlef, Y. and Cardy, J. (2009). Discretely holomorphic parafermions and integrable loop models. J. Phys. A 42 102001, 11. · Zbl 1159.81041 · doi:10.1088/1751-8113/42/10/102001
[22] Izergin, A. G., Coker, D. A. and Korepin, V. E. (1992). Determinant formula for the six-vertex model. J. Phys. A 25 4315-4334. · Zbl 0764.60114 · doi:10.1088/0305-4470/25/16/010
[23] Kadanoff, L. P. and Ceva, H. (1971). Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B (3) 3 3918-3939. · doi:10.1103/PhysRevB.3.3918
[24] Kasteleyn, P. W. (1961). The statistics of dimers on a lattice. i. the number of dimer arrangements on a quadratic lattice. Physica 27 1209-1225. · Zbl 1244.82014
[25] Kenyon, R. Conformal invariance of loops in the double-dimer model. preprint , arXiv: · Zbl 1283.05218 · arxiv.org
[26] Kenyon, R. (2001). Dominos and the Gaussian free field. Ann. Probab. 29 1128-1137. · Zbl 1034.82021 · doi:10.1214/aop/1015345599
[27] Kenyon, R. (2009). Lectures on dimers. In Statistical Mechanics . IAS/Park City Math. Ser. 16 191-230. Amer. Math. Soc., Providence, RI. · Zbl 1180.82001
[28] Kenyon, R., Okounkov, A. and Sheffield, S. (2006). Dimers and amoebae. Ann. of Math. (2) 163 1019-1056. · Zbl 1154.82007 · doi:10.4007/annals.2006.163.1019
[29] Kramers, H. A. and Wannier, G. H. (1941). Statistics of the two-dimensional ferromagnet. I. Phys. Rev. (2) 60 252-262. · JFM 67.0964.01 · doi:10.1103/PhysRev.60.252
[30] Kramers, H. A. and Wannier, G. H. (1941). Statistics of the two-dimensional ferromagnet. II. Phys. Rev. (2) 60 263-276. · JFM 67.0964.01 · doi:10.1103/PhysRev.60.263
[31] Lieb, E. H. (Oct 1967). Residual entropy of square ice. Phys. Rev. 162 162-172.
[32] McCoy, B. and Wu, T. The two-dimensional Ising model . Harvard Univ. Press, Boston, MA, 1973. · Zbl 1094.82500
[33] Mercat, C. (2001). Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218 177-216. · Zbl 1043.82005 · doi:10.1007/s002200000348
[34] Nienhuis, B. (1984). Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas. J. Stat. Phys. 34 731-761. · Zbl 0595.76071 · doi:10.1007/BF01009437
[35] Nienhuis, B. and Knops, H. J. F. (1872-1875, Aug). Spinor exponents for the two-dimensional potts model. Phys. Rev. B 32 1985.
[36] Palmer, J. (2007). Planar Ising Correlations . Progress in Mathematical Physics 49 . Birkhäuser, Boston, MA. · Zbl 1136.82001
[37] Pinson, H. T. (1994). Critical percolation on the torus. J. Stat. Phys. 75 1167-1177. · Zbl 0840.60095 · doi:10.1007/BF02186762
[38] Reshetikhin, N. (2010). Lectures on the integrability of the six-vertex model. In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing 197-266. Oxford Univ. Press, Oxford. · Zbl 1202.82022
[39] Riva, V. and Cardy, J. (2006). Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. Theory Exp. 12 P12001, 19 pp. (electronic).
[40] Rudin, W. (1990). Fourier Analysis on Groups . Wiley Classics Library . Wiley, New York. Reprint of the 1962 original, A Wiley-Interscience Publication. · Zbl 0698.43001
[41] Savit, R. (1982). Duality transformations for general abelian systems. Nuclear Phys. B 200 233-248. · doi:10.1016/0550-3213(82)90085-2
[42] Simon, B. (1974). The P ( \varphi ) 2 Euclidean (quantum) Field Theory . Princeton Univ. Press, Princeton, N.J. Princeton Series in Physics. · Zbl 1175.81146
[43] Smirnov, S. (2006). Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians. Vol. II 1421-1451. Eur. Math. Soc., Zürich. · Zbl 1112.82014
[44] Smirnov, S. (2010). Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2) 172 1435-1467. · Zbl 1200.82011 · doi:10.4007/annals.2010.172.1441 · pjm.math.berkeley.edu
[45] Thurston, W. P. (1990). Conway’s tiling groups. Amer. Math. Monthly 97 757-773. · Zbl 0714.52007 · doi:10.2307/2324578
[46] van Beijeren, H. (May 1977). Exactly solvable model for the roughening transition of a crystal surface. Phys. Rev. Lett. 38 993-996.
[47] Werner, W. (2004). Random planar curves and Schramm-Loewner evolutions. In Lectures on Probability Theory and Statistics . Lecture Notes in Math. 1840 107-195. Springer, Berlin. · Zbl 1057.60078 · doi:10.1007/978-3-540-39982-7_2
[48] Wu, F. Y. and Wang, Y. K. (1976). Duality transformation in a many-component spin model. J. Math. Phys. 17 439-440.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.