×

Early universe models from noncommutative geometry. (English) Zbl 1243.83005

Summary: We investigate cosmological predictions on the early universe based on the noncommutative geometry (NCG) models of gravity coupled to matter. Using the renormalization group analysis for the standard model with right-handed neutrinos and Majorana mass terms, which is the particle physics content of the most recent NCG models, we analyze the behavior of the coefficients of the gravitational and cosmological terms in the Lagrangian derived from the asymptotic expansion of the spectral action functional of NCG. We find emergent Hoyle-Narlikar and conformal gravity at the see-saw scales and a running effective gravitational constant, which affects the propagation of gravitational waves and the evaporation law of primordial black holes and provides Linde models of negative gravity in the early universe. The same renormalization group analysis also governs the running of the effective cosmological constant of the model. The model also provides a Higgs-based slow-roll inflationary mechanism, for which one can explicitly compute the slow-roll parameters. The particle physics content allows for dark matter models based on sterile neutrinos with Majorana mass terms.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C65 Methods of noncommutative geometry in general relativity
83F05 Relativistic cosmology
81T17 Renormalization group methods applied to problems in quantum field theory
83C35 Gravitational waves
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A40 Astrophysical cosmology
83C57 Black holes

Software:

REAP

References:

[1] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, Running neutrino mass parameters in see-saw scenarios, J. High Energy Phys. 03(024) (2005), hep-ph/0501272v3.
[2] S. Antusch, J. Kersten, M. Lindner and M. Ratz, Neutrino mass matrix running for non-degenerate see-saw scales, Phys. Lett. B538 (2002), 87-95.
[3] K. S. Babu, C. N. Leung and J. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B319 (1993), 191-198.
[4] J. Barrett, Lorentzian version of the noncommutative geometry of the Standard Model of particle physics, J. Math. Phys. 48(1) (2007), 012303, 7. · Zbl 1121.81122 · doi:10.1063/1.2408400
[5] J. D. Barrow, Gravitational memory? Phys. Rev. D46(8) (1992) R3227, 4.
[6] A. A. Belyanin, V. V. Kocharovsky and VI. V. Kocharovsky, Gammaray bursts from evaporating primordial black holes, Radiophys. Quantum Electronics, 41(1) (1996), 22-27.
[7] M. Birkel and S. Sarkar, Nucleosynthesis bounds on a time-varying cosmological ‘constant’, Astropart. Phys. 6 (1997), 197-203.
[8] I. L. Buchbinder, D. D. Odintsov and I. L. Shapiro, Effective action in quantum gravity, IOP Publishing, 1992.
[9] E. V. Bugaev, V. B. Petkov, A. N. Gaponenko, P. A. Klimai, M. V. Andreev, A. B. Chernyaev, I. M. Dzaparova, D. D. Dzhappuev, Zh. Sh. Guliev, N. S. Khaerdinov, N. F. Klimenko, A. U. Kudzhaev, A. V. Sergeev, V. I. Volchenko, G. V. Volchenko and A. F. Yanin, Experimental search of bursts of gamma rays from primordial black holes using different evaporation models.
[10] B. Ćaćić, Moduli spaces of Dirac operators for finite spectral triples, in “Quantum groups and noncommutative spaces: perspectives on quantum geometry”, eds.M.Marcolli and D. Parashar, Vieweg Verlag, Wiesbaden, 2010, pp. 9-68. · Zbl 1262.58017 · doi:10.1007/978-3-8348-9831-9_2
[11] B. J. Carr, Primordial black holes as a probe of the early universe and a varying gravitational constant.v2. · Zbl 0989.83028
[12] J. A. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D62 (2000), 053005, 4.
[13] A. Chamseddine, Noncommutative geometry as the key to unlock the secrets of space-time, “Quanta of Maths”, Clay Math. Proc., 11, American Mathematical Society, Providence, 2010, pp. 127-148, · Zbl 1218.81098
[14] A. Chamseddine and A. Connes, The spectral action principle, Comm. Math. Phys. 186(3) (1997), 731-750. · Zbl 0894.58007 · doi:10.1007/s002200050126
[15] A. Chamseddine and A. Connes, Why the standard model? J. Geom. Phys. 58(1) (2008), 38-47. · Zbl 1140.81021 · doi:10.1016/j.geomphys.2007.09.011
[16] A. Chamseddine and A. Connes, The uncanny precision of the spectral action, Comm. Math. Phys. 293(3) (2010), 867-897. · Zbl 1192.58005 · doi:10.1007/s00220-009-0949-3
[17] A. Chamseddine, A. Connes and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11(6) (2007), 991-1089. · Zbl 1140.81022 · doi:10.4310/ATMP.2007.v11.n6.a3
[18] A. Connes, Geometry from the spectral point of view, Lett. Math. Phys. 34(3) (1995), 203-238. · Zbl 1042.46515 · doi:10.1007/BF01872777
[19] A. Connes, Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182(1) (1996),155-176. · Zbl 0881.58009 · doi:10.1007/BF02506388
[20] A. Connes, Noncommutative geometry and the standard model with neutrino mixing, J. High Energy Phys. 081(11) (2006), 19 (electronic).
[21] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
[22] A. Connes and M. Marcolli, Noncommutative geometry, quantum fields, and motives, Colloquium Publications, 55, Amer. Math. Soc., 2008. · Zbl 1209.58007
[23] A. Connes and M. Marcolli, A walk in the noncommutative garden, in “An invitation to noncommutative geometry”, pp. 1-128, World Scientific, Hackensack, 2008. · Zbl 1145.14005 · doi:10.1142/9789812814333_0001
[24] A. De Simone, M. P. Hertzberg and F.Wilczek, Running inflation in the Standard Model, Phys. Lett. B678 (2009), 1-8, hep-ph/0812.4946v2.
[25] A. D. Dolgov, An attempt to get rid of the Cosmological constant, in “The very early universe”, eds. G. W. Gibbons, S. W. Hawking and S. T. S. Siklos, Cambridge University Press, Cambridge, 1983, p. 449
[26] A. Edery, L. Fabbri and M. B. Paranjape, Spontaneous breaking of conformal invariance in theories of conformally coupled matter and Weyl gravity, hep-th/0603131. · Zbl 1117.83093
[27] K. Freese, F. C. Adams, J. A. Frieman and E. Mottola, Cosmology with decaying vacuum energy, Nuclear Phys. B287 (1987), 797-814.
[28] R. Gregory, V. A. Rubakov and S. M. Sibiryakov, Gravity and antigravity in a brane world with metastable gravitons, Phys. Lett. B489 (2000), 203-206. · Zbl 1050.83513 · doi:10.1016/S0370-2693(00)00917-5
[29] U. Guenther, A. Zhuk, V. Bezerra and C. Romero, AdS and stabilized extra dimensions in multidimensional gravitational models with nonlinear scalar curvature terms 1/R and R4, Class. Quant. Grav. 22 (2005), 3135-3167. · Zbl 1081.83027 · doi:10.1088/0264-9381/22/16/002
[30] A. H. Guth, Phase transitions in the very early universe, in “The very early universe”, eds. G. W. Gibbons, S. W. Hawking and S. T. C. Siklos, Cambridge University Press, Cambridge, 1982, pp. 171-204.
[31] F. Hoyle and J. V. Narlikar, A new theory of gravitation, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 282(1389) (1964), 191-207. · Zbl 0129.41401 · doi:10.1098/rspa.1964.0227
[32] K. Jakobs and M. Schumacher, Prospects for Higgs boson searches at the LHC, in “Perspectives on LHC physics”, eds. G. Kane and A. Pierce, World Scientific, Hackensack, 2008, pp. 179-204.
[33] A. Kusenko, Sterile neutrinos: the dark side of the light fermions. · Zbl 1291.81468
[34] A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure, Cambrige University Press, Cambridge, 2000. · Zbl 0952.83001 · doi:10.1017/CBO9781139175180
[35] A. D. Linde, Gauge theories, time-dependence of the gravitational constant and antigravity in the early universe, Phys. Lett. B93(4) (1980), 394-396.
[36] D. Lohiya, Non-topological solitons in non-minimally coupled scalar fields: theory and consequences, Astrophys. Space Sci., 232, (1995) 1-22. · Zbl 0838.53065 · doi:10.1007/BF00627539
[37] P. D. Mannheim, Alternatives to dark matter and dark energy, Progr. Part. Nucl. Phys. 56(2) (2006), 340-445.
[38] W. Nelson and M. Sakellariadou, Cosmology and the noncommutative geometry approach to the Standard Model, Phys. Rev. D81 (2010), 085038. [hep-th].
[39] I. D. Novikov, A. G. Polnarev, A. A. Starobinsky and Ya. B. Zeldovich, Primordial black holes, Astron. Astrophys. 80 (1979), 104-109.
[40] J. M. Overduin and F. I. Cooperstock, Evolution of the scale factor with a variable comological term, astro-ph/9805260.
[41] M. D. Pollock, On the proposed existence of an anti-gravity regime in the early universe, Phys. Lett. B108 (1982), 386-388.
[42] M. D. Pollock, Determination of the superstring moduli from the higher-derivative terms, Phys. Lett. B495 (2000), 401-406. · Zbl 0976.81082 · doi:10.1016/S0370-2693(00)01251-X
[43] M. V. Safonova and D. Lohiya, Gravity balls in induced gravity models - ‘gravitational lens’ effects. Gravit. Cosmol. (1) (1998), 1-10. · Zbl 1003.83033
[44] M. Shaposhnikov, The \nu MSM, leptonic asymmetries, and properties of singlet fermions, J. High Energy Phys. 08(008) (2008), 56.
[45] M. Shaposhnikov and I. Tkachev, The \nu MSM, inflation, and dark matter, Phys. Lett. B639 (2006), 414-417.
[46] Tevatron New Phenomena, Higgs working group, CDF Collaboration, D0 Collaboration, Combined CDF and Dzero Upper Limits on Standard Model Higgs Boson Production at High Mass (155-200 GeV/c2) with 3 fb-1 of data.
[47] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York, 1972.
[48] A. Zee, Broken-symmetry theory of gravity, Phys. Rev. Lett. 42 (1979), 417-421.
[49] Ya. B. Zeldovich, The cosmological constant and the theory of elementary particles, Sov. Phys. Usp. 11 (1968), 381-393.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.