A novel approach on stabilization for linear systems with time-varying input delay. (English) Zbl 1243.93103

Summary: This paper presents new results on delay-dependent stability and stabilization for linear systems with interval time-varying delays. Some less conservative delay-dependent criteria for determining the stability of the time-delay systems are obtained in this paper. Based on the stability conditions, we propose a new state transformation technology to facilitate controller designing efficiently and computationally. The method is also applicable to the existing stability conditions reported by now, while the existing technologies may fail to derive computational control procedures from the stability conditions. Finally, some numerical examples well illustrate the effectiveness of the proposed method.


93D21 Adaptive or robust stabilization
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
Full Text: DOI


[1] Ariba, Y.; Gouaisbaut, F., An augmented model for robust stability analysis of time-varying delay systems, International Journal of Control, 82, 1616-1626 (2009) · Zbl 1190.93076
[2] Boyd, S.; EL Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM: SIAM Philadelphia, PA · Zbl 0816.93004
[3] Basin, M.; Shi, P.; Calderon-Alvarez, D., Joint state filtering and parameter estimation for linear time-delay systems, Signal Processing, 91, 782-792 (2011) · Zbl 1217.94034
[4] Dugard, L.; Verriest, E. I., Stability and Control of Time-delay Systems (1998), Springer-Verlag: Springer-Verlag London · Zbl 0901.00019
[5] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of Time-Delay Systems (2003), Birkhauser: Birkhauser Boston · Zbl 1039.34067
[6] Gu, K.; Niculescu, S. I., Survey on recent results in the stability and control of time-delay systems, Journal of Dynamic Systems, Measurement, and Control, 124, 158-165 (2003)
[7] Hu, L.; Shi, P.; Cao, Y., Delay-dependent filtering design for time-delay systems with Markovian jumping parameters, International Journal of Adaptive Control and Signal Processing, 21, 434-448 (2007) · Zbl 1120.60043
[8] Hale, J. K.; Verduyn Lunel, S. M., Introduction of Functional Differential Equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 1052.93028
[9] Han, Q. L.; Gu, K., Stability of linear systems with time-varying delay: a generalized discretized Lyapunov functional approach, Asian Journal of Control, 3, 170-180 (2001)
[10] He, Y.; Wang, Q.; Lin, C.; Wu, M., Delay-range-dependent stability for systems with time-varying delay, Automatica, 43, 371-376 (2007) · Zbl 1111.93073
[11] Lin, Z.; Fang, H., On asymptotic stabilizability of linear systems with delayed input, IEEE Transactions on Automatic Control, 52, 998-1013 (2007) · Zbl 1366.93581
[12] Lakshmanan, S.; Senthilkumar, T.; Balasubramaniam, P., Improved results on robust stability of neutral systems with mixed time-varying delays and nonlinear perturbations, Applied Mathematical Modelling, 35, 5355-5368 (2011) · Zbl 1228.93091
[13] Mahmoud, M. S.; Ismail, A., New results on delay-dependent control of time-delay systems, IEEE Transactions on Automatic Control, 50, 95-100 (2005) · Zbl 1365.93143
[14] Nguang, S. K.; Shi, P.; Ding, S., Delay dependent fault estimation for uncertain time delay nonlinear systems: an LMI approach, International Journal of Robust and Nonlinear Control, 16, 913-933 (2006) · Zbl 1135.93022
[15] Park, M. J.; Kwon, O. M.; Park, Ju H.; Lee, S. M., A new augmented LyapunovCKrasovskii functional approach for stability of linear systems with time-varying delays, Applied Mathematics and Computation, 217, 7197-7209 (2011) · Zbl 1219.93106
[16] Richard, J. P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, 1667-1694 (2003) · Zbl 1145.93302
[17] Shao, H. Y., New delay-dependent stability criteria for systems with interval delay, Automatica, 45, 744-749 (2009) · Zbl 1168.93387
[19] Shi, P.; Boukas, E. K.; Agarwal, R., Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay, IEEE Transactions on Automatic Control, 44, 2139-2144 (1999) · Zbl 1078.93575
[20] Sun, J.; Liu, G. P.; Chen, J.; Reers, D., Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica, 46, 466-470 (2010) · Zbl 1205.93139
[21] Shi, P.; Mahmoud, M.; Nguang, S.; Ismail, A., Robust filtering for jumping systems with mode-dependent delays, Signal Processing, 86, 140-152 (2006) · Zbl 1163.94387
[22] Wang, D.; Wang, W.; Shi, P., Robust fault detection for switched linear systems with state delays, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 39, 800-805 (2009)
[23] Xia, Y.; Fu, M.; Shi, P., Analysis and Synthesis of Dynamical Systems with Time-Delays (2009), Springer-Verlag: Springer-Verlag Berlin
[24] Xu, S.; Lam, J., A survey of linear matrix inequality techniques in stability analysis of delay systems, International Journal of Systems Science, 39, 1095-1113 (2008) · Zbl 1156.93382
[25] Xia, Y.; Liu, G. P.; Shi, P.; Rees, D., Robust delay-dependent sliding mode control for uncertain time-delay systems, International Journal of Robust and Nonlinear Control, 18, 1142-1161 (2008) · Zbl 1284.93070
[26] Yang, R.; Gao, H.; Shi, P., Delay-dependent robust \(H_∞\) control for uncertain stochastic time-delay systems, International Journal of Robust and Nonlinear Control, 20, 1852-1865 (2010) · Zbl 1203.93191
[27] Zhang, X. M.; Wu, M.; She, J. H.; He, Y., Delay-dependent stabilization of linear systems with time-varying state and input delays, Automatica, 41, 1405-1412 (2005) · Zbl 1093.93024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.