Tian, Zhiyu Symplectic geometry of rationally connected threefolds. (English) Zbl 1244.14041 Duke Math. J. 161, No. 5, 803-843 (2012). This paper mainly concerns the following conjecture of J. Kollár [Prog. Math. 168, 255–288 (1998; Zbl 0970.14001)]: Let \(X\) and \(X'\) be two smooth projective varieties which are symplectic deformation equivalent. Then \(X\) is rationally connected if and only if \(X'\) is. The author proved Kollár’s conjecture in dimension \(3\) by using the strategy of C. Voisson [Astérisque 322, 1–21 (2008; Zbl 1178.14048)]. An important ingredient is the proof of existence of nonzero Gromov-Witten invariants in genus zero. Reviewer: Hao Xu (Cambridge) Cited in 1 ReviewCited in 7 Documents MSC: 14M22 Rationally connected varieties 14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) Keywords:rationally connected; Gromov-Witten invariants Citations:Zbl 0970.14001; Zbl 1178.14048 PDF BibTeX XML Cite \textit{Z. Tian}, Duke Math. J. 161, No. 5, 803--843 (2012; Zbl 1244.14041) Full Text: DOI arXiv Euclid OpenURL References: [1] D. Abramovich, K. Karu, K. Matsuki, and J. Włodarczyk, Torification and factorization of birational maps , J. Amer. Math. Soc. 15 (2002), 531-572. · Zbl 1032.14003 [2] T. Graber, J. Harris, and J. Starr, Families of rationally connected varieties , J. Amer. Math. Soc. 16 (2003), 57-67. · Zbl 1092.14063 [3] J. Hu, T.-J. Li, and Y. Ruan, Birational cobordism invariance of uniruled symplectic manifolds , Invent. Math. 172 (2008), 231-275. · Zbl 1163.53055 [4] J. Kollár, Extremal rays on smooth threefolds , Ann. Sci. École Norm. Sup. (4) 24 (1991), 339-361. · Zbl 0753.14036 [5] J. Kollár, Rational Curves on Algebraic Varieties , Ergeb. Math. Grenzgeb. (3) 32 , Springer, Berlin, 1996. [6] J. Kollár, “Low degree polynomial equations: Arithmetic, geometry and topology” in European Congress of Mathematics, Vol. I (Budapest, 1996) , Progr. Math. 168 , Birkhäuser, Basel, 1998, 255-288. · Zbl 0970.14001 [8] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties , with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original. Cambridge Tracts in Math. 134 , Cambridge Univ. Press, Cambridge, 1998. · Zbl 0926.14003 [9] J. Li, Stable morphisms to singular schemes and relative stable morphisms , J. Differential Geom. 57 (2001), 509-578. · Zbl 1076.14540 [10] J. Li, A degeneration formula of GW-invariants , J. Differential Geom. 60 (2002), 199-293. · Zbl 1063.14069 [11] A.-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3 -folds , Invent. Math. 145 (2001), 151-218. · Zbl 1062.53073 [12] S. Mori and S. Mukai, Classification of Fano 3 -folds with B 2 \geq 2, Manuscripta Math. 36 (1981/82), 147-162. · Zbl 0478.14033 [13] S. Mori and S. Mukai, “Classification of Fano 3-folds with B 2 \geq 2” in Algebraic and Topological Theories (Kinosaki, 1984) , Kinokuniya, Tokyo, 1986, 496-545. · Zbl 0800.14021 [14] D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory , Topology 45 (2006), 887-918. · Zbl 1112.14065 [15] Y. Namikawa, Smoothing Fano 3 -folds , J. Algebraic Geom. 6 (1997), 307-324. · Zbl 0906.14019 [16] Y. Ruan, “Virtual neighborhoods and pseudo-holomorphic curves” in Proceedings of 6th Gökova Geometry-Topology Conference , Turkish J. Math. 23 , Sci. Tech. Res. Council Turkey, Ankara, 1999, 161-231. · Zbl 0967.53055 [17] I. R. Shafarevich, Algebraic Geometry, V: Fano Varieties , Encycl. Math. Sci. 47 , Springer, Berlin, 1999. · Zbl 0903.00014 [18] M. Shen, Rational curves on Fano threefolds of Picard number one . Ph.D. dissertation, Columbia University, New York, 2010. [19] C. Voisin, “Rationally connected 3-folds and symplectic geometry” in Géométrie Différentielle, Physique Mathématique, Mathématiques et Société, II , Astérisque 322 , Soc. Math. France, Montrouge, 2008, 1-21. · Zbl 1178.14048 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.