Hiranouchi, Toshiro Milnor \(K\)-groups modulo \(p^{n}\) of a complete discrete valuation field. (English) Zbl 1244.19002 Proc. Japan Acad., Ser. A 88, No. 4, 59-61 (2012). For a mixed characteristic complete discrete valuation field \(K\) which contains a \(p^{n}\)-th root of unity, the author determines the graded quotients of the filtration on the Milnor \(K\)-groups \(K_{q}^{M}(K)\) modulo \(p^{n}\) in terms of differential forms of the residue field of \(K\). Reviewer: L. N. Vaserstein (University Park) MSC: 19D45 Higher symbols, Milnor \(K\)-theory Keywords:Milnor \(K\)-groups; complete discrete valuation field × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] S. Bloch and K. Kato, \(p\)-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. No. 63 (1986), 107-152. · Zbl 0613.14017 · doi:10.1007/BF02831624 [2] I. B. Fesenko, Class field theory of multidimensional local fields of characteristic \(0\) with residue field of positive characteristic, (Russian) Algebra i Analiz 3 (1991), no. 3, 165-196; translation in St. Petersburg Math. J. 3 (1992), no. 3, 649-678. · Zbl 0791.11064 [3] I. B. Fesenko, Sequential topologies and quotients of Milnor \(K\)-groups of higher local fields, (Russian) Algebra i Analiz 13 (2001), no. 3, 198-221; translation in St. Petersburg Math. J. 13 (2002), no. 3, 485-501. [4] I. Fesenko, Topological Milnor \(K\)-groups of higher local fields, in Invitation to higher local fields (Münster, 1999) , 61-74 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000. · Zbl 1008.11065 [5] K. Kato, A generalization of local class field theory by using \(K\)-groups. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), no. 2, 303-376. · Zbl 0428.12013 [6] K. Kato, A generalization of local class field theory by using \(K\)-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603-683. · Zbl 0463.12006 [7] K. Kato, A generalization of local class field theory by using \(K\)-groups. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 1, 31-43. · Zbl 0503.12004 [8] O. Izhboldin, \(p\)-primary part of the Milnor \(K\)-groups and Galois cohomologies of fields of characteristic \(p\), in Invitation to higher local fields (Münster, 1999) , 19-41 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000. · Zbl 1008.11052 [9] M. Kurihara, On the structure of Milnor \(K\)-groups of certain complete discrete valuation fields, J. Théor. Nombres Bordeaux 16 (2004), no. 2, 377-401. · Zbl 1079.11058 · doi:10.5802/jtnb.452 [10] J. Nakamura, On the Milnor \(K\)-groups of complete discrete valuation fields, Doc. Math. 5 (2000), 151-200 (electronic). · Zbl 0948.19001 [11] J. Nakamura, On the structure of the Milnor \(K\)-groups of complete discrete valuation fields, in Invitation to higher local fields (Münster, 1999) , 123-135 (electronic), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000. · Zbl 1008.11064 [12] A. N. Parshin, Local class field theory, Trudy Mat. Inst. Steklov. 165 (1984), 143-170. · Zbl 0535.12013 [13] C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346-372. · Zbl 1214.14018 · doi:10.1112/jtopol/jtp013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.