×

Coefficient estimates for a certain subclass of analytic and bi-univalent functions. (English) Zbl 1244.30033

Summary: We introduce and investigate an interesting subclass \(\mathcal{H}_{\Sigma}^{h,p}\) of analytic and bi-univalent functions in the open unit disk \(\mathbb{U}\). For functions belonging to the class \(\mathcal{H}_{\Sigma}^{h,p}\), we obtain estimates on the first two Taylor-Maclaurin coefficients \(|a_{2}|\) and \(|a_{3}|\). The results presented in this paper generalize and improve some recent work of the last author, A.K. Mishra and P. Gochhayat [ibid. 23, No. 10, 1188–1192 (2010; Zbl 1201.30020)].

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable

Citations:

Zbl 1201.30020
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Duren, P. L., (Univalent Functions. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259 (1983), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg and Tokyo) · Zbl 0514.30001
[2] (Srivastava, H. M.; Owa, S., Current Topics in Analytic Function Theory (1992), World Scientific Publishing Company: World Scientific Publishing Company Singapore, New Jersey, London and Hong Kong) · Zbl 0976.00007
[3] Altıntaş, O.; Irmak, H.; Owa, S.; Srivastava, H. M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett., 20, 1218-1222 (2007) · Zbl 1139.30005
[4] Breaz, D.; Breaz, N.; Srivastava, H. M., An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., 22, 41-44 (2009) · Zbl 1163.30304
[5] Owa, S.; Nunokawa, M.; Saitoh, H.; Srivastava, H. M., Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett., 15, 63-69 (2002) · Zbl 1038.30011
[6] Srivastava, H. M.; Eker, S. S., Some applications of a subordination theorem for a class of analytic functions, Appl. Math. Lett., 21, 394-399 (2008) · Zbl 1138.30014
[7] Srivastava, H. M.; Xu, Q.-H.; Wu, G.-P., Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett., 23, 763-768 (2010) · Zbl 1189.30041
[8] Xu, Q.-H.; Srivastava, H. M.; Li, Z., A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., 24, 396-401 (2011) · Zbl 1206.30035
[9] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, 63-68 (1967) · Zbl 0158.07802
[10] (Brannan, D. A.; Clunie, J. G., Aspects of Contemporary Complex Analysis. Aspects of Contemporary Complex Analysis, (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979) (1980), Academic Press: Academic Press New York and London) · Zbl 0483.00007
[11] Netanyahu, E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(\mid z \mid < 1\), Arch. Rational Mech. Anal., 32, 100-112 (1969) · Zbl 0186.39703
[12] Brannan, D. A.; Taha, T. S., On some classes of bi-univalent functions, (Mazhar, S. M.; Hamoui, A.; Faour, N. S., Mathematical Analysis and Its Applications. Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985. Mathematical Analysis and Its Applications. Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, KFAS Proceedings Series, vol. 3 (1988), Pergamon Press, Elsevier Science Limited: Pergamon Press, Elsevier Science Limited Oxford), 53-60, See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77 · Zbl 0614.30017
[13] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.; T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[14] Brannan, D. A.; Clunie, J.; Kirwan, W. E., Coefficient estimates for a class of star-like functions, Canad. J. Math., 22, 476-485 (1970) · Zbl 0197.35602
[15] Srivastava, H. M.; Mishra, A. K.; Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, 1188-1192 (2010) · Zbl 1201.30020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.